

Spatio-Temporal Convolutional Autoencoders for Perimeter Intrusion Detection

<u>Devashish Lohani</u>, Carlos Crispim-Junior, Quentin Barthélemy, Sarah Bertrand, Lionel Robinault and Laure Tougne

Outline

Objectives

Reproducibility on Fall detection task: Deepfall* framework

Applicability on Perimeter intrusion detection task

* Nogas, Jacob, Shehroz S. Khan, and Alex Mihailidis. "Deepfall: Non-invasive fall detection with deep spatio-temporal convolutional autoencoders." Journal of Healthcare Informatics Research (2020).

Perimeter Intrusion Detection System (PIDS)

Intrusion

Moving object ∈ unauthorized category (like motorcycle, car, person, etc.)
 unauthorized for particular area (space) and time
 PIDS detects intrusion

Detecting all frames containing an intrusion in the video

4

Existing PID Approaches

Moving object detection

GMM, Background subtraction [Vijverberg14-ICIP]

Moving object detection & image classification

- Background subtraction + HOG & handcrafted features + SVM/ANN [Zhang15-ICCAS]
- Background subtraction + CNN based classifier [Seung18-ANE]

Limitations:

- Learns spatial & temporal features independently
- Supervised learning based PIDS (humans as intrusions)

Approach

Spatio Temporal Convolutional AutoEncoder (STCAE)

C3D 3.

LIRIS

1.

2.

3D Convolution + 2D/3D Max-pooling

2D/3D Upsampling + 3D Convolution

Spatio Temporal Convolutional AutoEncoder (STCAE)

Training parameters:

- Activation function : ReLU hidden layers, tanh output layer
- > Optimizer : Adadelta
- **Epochs :** 500

LIRIS

Approach: Detecting Abnormal events

LIRIS

Reconstruction Error for windows

Reconstruction Error for frames

Detection of Abnormal events

Datasets : Thermal Fall Dataset [Vadivelu16-ACCV]

Result demonstration on Fall Detection Task

Reproduced Results on Fall Detection Task

Models	RE	Testing	DeepFall	Ours			
		Time	AUROC per video	AUROC per video	AUROC all videos	AUPR all videos	
STCAE UpSampling	r^{σ}	49.88s	0.96(0.03)	0.96(0.02)	0.96	0.29	
	r^{μ}	48.61s	0.95(0.04)	0.94(0.04)	0.88	0.23	
	r	47.11s	_	0.94(0.04)	0.89	0.24	
STCAE Deconvolution	r^{σ}	56.31s	0.96(0.02)	0.96(0.02)	0.96	0.27	
	r ^µ	55.94s	0.94(0.04)	0.94(0.04)	0.88	0.23	
	r	54.92s	_	0.94(0.04)	0.89	0.21	
STCAE C3D	r^{σ}	55.98s	0.97(0.02)	0.96(0.03)	0.95	0.25	
	r ^µ	54.52s	0.93(0.07)	0.90(0.07)	0.85	0.19	
	r	54.23s	_	0.91(0.06)	0.87	0.21	

UpSampling models: fastest speed & highest performance

- Models with r^{σ} perform superior to others
- Overall :

Up to 6% degradation of AUROC scores from "per video" to "all videos"

Poor AUPR all videos score

Datasets : Perimeter Intrusion Dataset

ntrusion

 Single View
 25 fps
 400 × 296 frame resolution
 Unauthorized classes: human, car, bike, truck & other vehicles

- Training 80 videos
 Only non-intrusion frames : 41941 frames
 Testing 100 videos
 - **38403** frames, **37.04%** intrusion frames

Result demonstration on Perimeter Intrusion Detection Task

Results on Perimeter Intrusion Detection Task

Models	RE	Tin	ne	AUC all videos	
WIOdels		Training	Testing	ROC	\mathbf{PR}
DSTCAE UpSampling	r^{σ}	590.25 min	$55.19\mathrm{s}$	0.93	0.88
	r^{μ}		52.05s	0.91	0.81
	r		51.24s	0.92	0.83
DSTCAE	r^{σ}	594.95 min	61.15s	0.93	0.86
Deconvolution	r^{μ}		$59.57\mathrm{s}$	0.91	0.80
Deconvolution	r		58.55s	0.91	0.82
DSTCAF	r^{σ}	591.10 min	$60.38\mathrm{s}$	0.90	0.81
C3D	r^{μ}		59.46s	0.91	0.80
COD	r		57.98s	0.91	0.82

UpSampling models: fastest speed & highest performance

- Models with r^{σ} perform superior to others
- Overall :

Smaller gap between AUROC and AUPR scores

Good AUPR score

Conclusion

Future Works

References

- 1. [Seung18-ANE] Seung Hyun Kim, Su Chang Lim, et al. Intelligent intrusion detection system featuring a virtual fence, active intruder detection, classification, tracking, and action recognition. Annals of Nuclear Energy, 2018.
- 2. [Zhang15-ICCAS] Zhang, Yong-Liang, et al. "Perimeter intrusion detection based on intelligent video analysis." 2015 15th International Conference on Control, Automation and Systems (ICCAS).
- 3. [Tran15-ICCV] Tran, Du, et al. "Learning spatiotemporal features with 3d convolutional networks." ICCV,2015.
- 4. [Kiran18-J. Imaging] Kiran, Ravi et al. "An overview of deep learning based methods for unsupervised and semisupervised anomaly detection in videos." Journal of Imaging, 2018.
- 5. [Nogas20-JHIR] Nogas, Jacob, Shehroz S. Khan, and Alex Mihailidis. "Deepfall: Non-invasive fall detection with deep spatio-temporal convolutional autoencoders." Journal of Healthcare Informatics Research (2020).
- 6. [Vadivelu16-ACCV] Vadivelu, Somasundaram, et al. "Thermal imaging based elderly fall detection." Asian Conference on Computer Vision. Springer, Cham, 2016.
- 7. [Vijverberg14-ICIP] Vijverberg, J.A., Janssen, R.T., de Zwart, R., de With, P.H.: Perimeter-intrusion event classification for on-line detection using multiple instance learning solving temporal ambiguities. In: ICIP. pp. 2408–2412 (2014)

Spatio-Temporal Convolutional Autoencoders for Perimeter Intrusion Detection

Devashish Lohani, Carlos Crispim-Junior, Quentin Barthélemy, Sarah Bertrand, Lionel Robinault and Laure Tougne

Contact : devashish.lohani@univ-lyon2.fr , d.lohani@foxstream.fr

