SIGGRAPH.ORG THINK SUBJECT SUB

CODE REPLICABILITY IN COMPUTER GRAPHICS

Nicolas Bonneel¹, David Coeurjolly¹, Julie Digne¹, Nicolas Mellado²

¹Univ. Lyon./CNRS ²Univ. Toulouse./CNRS

- How to compare our method to others if no code available ?
- How to improve other methods if no code available ?
- How can I trust others' results if no code available ?
 - If my reimplementation produces different results, do I have a bug?
 - Examples:
 - Excel date conversion in genomic (e.g., Septin 2 -> SEPT2 -> 09/02) [Ziemann et al. 2016]. Now SEPTIN2!
 - Bug in fMRI software increased false-positive rates [Eklund et al. 2016]

- Evaluate replicability of codes in computer graphics
 - ACM definition: Replicability = using the author's codes / Reproducibility = re-coding.
 - Definition highly debated ! Opposite definition for National Academies of Sciences, Engineering and Medicine.
 - Siggraph 2014, 2016, 2018 conferences as proxy with high quality standards
 - Spirit: as if I asked my Ph.D. students to compare her approach to a given Siggraph paper
 - Not just "I tried to compile 10min, it didn't work"
- Analyze trends
 - In time
 - With respect to paper impact, sub-communities, authors (academia/industrial)
- Encourage sharing of codes
 - Development of a community website <u>http://replicability.graphics/</u>

From 374 papers...

...we ran 151 codes

STATE OF THE ART

- « Reproducibility Crisis » in experimental sciences
 - Psychology/social sciences replication rates of 36% [Open Science Collaboration 2015] to ~79% [Makel et al. 2012]
 - Wide disparities across fields: 55% results deemed reproducible in engineering, 73% in physics [Baker 2016]
- Reproducibility in computational sciences
 - Hydrology: 0.6-6.8% of 1,989 papers deemed reproducible using available data/code/software. [Stagge et al. 2019]
 - Important problem: Lack of documentation (89% tested articles)
 - Artificial Intelligence: Over 400 IJCAI/AAAI papers: 6% share code, 56% training data, 30% test data [Hutson 2018]
 - Image processing: at IEEE TIP, code availability = 2x citations [Vandewalle 2019]

No existing study for CG

REPRODUCIBILITY/REPLICABILITY EFFORTS

- Reproducibility challenge at ICLR in Machine Learning
- Reproducibility labels in Pattern Recognition
- Image Processing On Line (IPOL) journal, Journal of Computer Graphics Techniques (JCGT)
- Graphics Replicability Stamp Initiative (GRSI) <u>http://replicabilitystamp.org</u>
- Artifact Evaluation Committee in Programming languages (additional presentation time at conferences, extra page...)
- Many technical initiatives: mloss, RunMyCode, ResearchCompendia, paperswithcode
- Long-term storage of code: Software Heritage, Github Archive Program

OUR APPROACH

© 2020 SIGGRAPH. ALL RIGHTS RESERVED.

OUR APPROACH

- We report factual information
 - ACM keywords, paper URL etc.
 - Presence of code, of documentation, of algorithm, type of software (code/binary), license, library dependencies
 - Impact metric: Google scholar citation count, Altmetric
 - Categorize papers: Rendering, Animation and simulation, Geometry, Images, VR, Fabrication
 - How to make the code run, the time we spent making it run
- We report subjective assessment
 - Documentation score [1..3]
 - Algorithm reproducibility score [1..5]
 - Dependencies score [1..5]
 - Fixing bugs score [1..5]
 - Build score [1..5]
 - Code replicability score [1..5]

Our approach

Comments

The program comes with microCT scans and a window executable, which also launches matlab code. To be able to recompile the code with Visual Studio 2017, you need a number of steps :

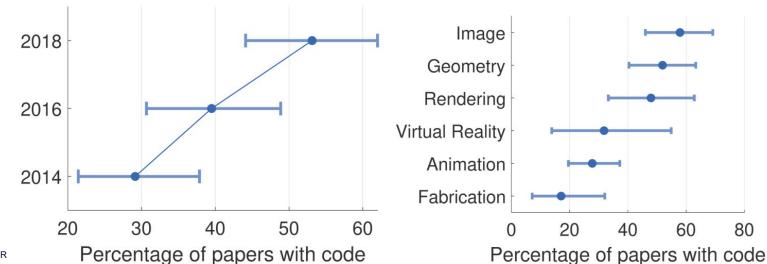
```
- MicroCT.cpp, line 1270, replace :
  std:vector<float> ellipse_s_vec(loopNum), ellipse_l_vec(loopNum), yarn_radius_vec(loopNum);
  by
  std:vector<float> ellipse_s_vec(loopNum), ellipse_l_vec(loopNum), yarn_radius_vec(loopNum);
  (note the :: instead of : )
```

- Util.h, line 99, remove the round function.

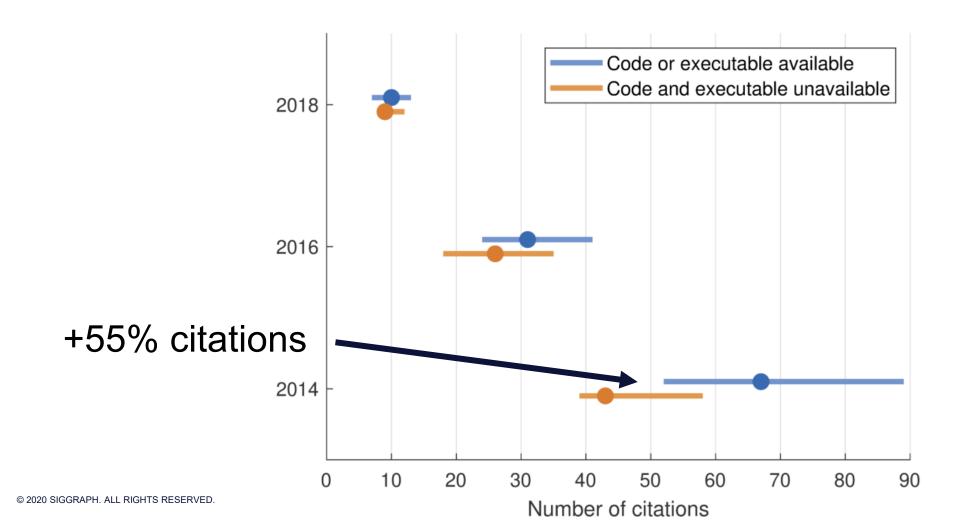
```
    add the preprocessor directive _CRT_SECURE_NO_WARNINGS
```

* The provided precompiled OpenCV was causing issues ; perhaps it had been compiled in 32 bits (?). I used a fresh OpenCV install instead, which led to a couple of additional edits :

```
- in MicroCT.h, replace the opencv includes
#include "opencv/include/opencv/cv.h"
#include "opencv/include/opencv/highgui.h"
#include "opencv/include/opencv2/opencv.hpp"
by
#include <opencv2/highgui.hpp>
#include "opencv2/opencv.hpp"
#include "opencv2/core/types c.h>
```



OUR RESULTS



- Paper availability
 - Over 374 papers, only 2 are only available with subscription on the ACM Digital Library
 - 27 as archived pre-prints (HAL, arXiv), 44 are ACM Open Access
- Code availability
 - Over 374 papers: 133 codes (19 we could not run due to tech issues, 5 due to hardware), 18 binaries
 - 60 codes without license information, 11 without documentation nor instructions at all.

RESULTS

- No impact of year on replicability score (!)
- Had to modify 68 out of 133 codes (!)
 - 20 codes deemed hard to fix
 - 27 took more than 100 minutes (spoiler: could have taken days)
- Effect of academia (45.4%) vs. industrial (31.3%)
 - Real issue here: no double standard should be accepted in science.

Common issues

Evolved dependencies / missing versions / missing makefiles

- E.g. TensorFlow 1.4.0 require to downgrade CUDA drivers to v8
- Python 2.7 not maintained as of January 1st, 2020, Caffe not maintained anymore, syntax changes in Pytorch, Qt, etc.
- Precompiled libraries for outdated compilers
- Real and important issue, notably in deep learning.

Missing pre-trained neural networks

- Re-training can take days, datasets can be huge
- Lack of instructions
 - No default parameters
 - Undocumented output (sometimes, raw numbers in the console) or file types
- Occasionally: Code that would have never run as is (e.g., merge conflict, syntax errors)

Browse and contribute: <u>https://replicability.graphics/browse.html#data</u>

PDF only available on the Digital Library (not Open Access)

- Hardware papers
 - Could not assess some papers: require Hall sensors, microcontrollers, spatial light modulators etc.
- Assessment at time t
 - Maybe these codes will not run next year
 - Hopefully authors will fix their codes
- No perfect solution for dependencies issues
 - Virtualization, docker, anaconda, Nix...

RECOMMENDATIONS

RECOMMENDATIONS

• For authors

- Avoid libraries when possible (e.g., avoid OpenCV just to load image files)
- At least describe library versions, or ship libraries
- Document code
- Provide data
- Provide pre-trained neural networks

• For program chairs

- Set (later) deadline for code
- Communication around replicability and code

• For publishers

- Identifying codes (separate from "supplementary materials")
- Long-term code storage (Software Heritage ?)

And now...

And now...

• Siggraph 2019, Siggraph 2020, Siggraph Asia 2015 partially analyzed

- S2019: 66 papers analyzed (27 with code)
- S2020: 9 papers analyzed (4 with code)
- SA2015: 1 paper analyzed (1 with code)

Almost no contribution outside of the authors

- Reasons:
 - submission process too complicated?
 - Extra work not deemed valuable enough?
 - An unconscious will to preserve the status quo on replicability in Graphics?
- But: A few corrections by the paper authors (e.g. when code was not found in our early analysis)
- A link was established with the Graphics Replicability Stamp
 - Papers with good replicability scores were invited to submit their paper to GRSI
 - The authors were invited to join the GRSI committee