
Authors proceedings of RRPR
2021

1

Preface

This volume contains the authors version of the papers presented at RRPR2021:
Third Workshop on Reproducible Research in Pattern Recognition held on Jan-
uary 11, 2021 in Milan.

This proceedings will be edited as a post procreedinngs shortly after the
worskhop during Januray. The next LNCS will potentially includes changes
and revisions resulting of the workshop innteraction.

This authors version of proceedings was generated with the eayschair Pro-
ceedinngs manager section.

January 10, 2021
Bron

Bertrand Kerautret
Miguel Colom

Daniel Lopresti
Pascal Monasse
Hugues Talbot

Adrien Krähenbühl

2

Table of Contents

RR Framework

ReproducedPapers.org: Openly teaching and structuring machine
learning reproducibility . 8

Burak Yildiz, Hayley Hung, Jesse H. Krijthe, Cynthia C. S. Liem,
Marco Loog, Gosia Migut, Frans Oliehoek, Annibale Panichella, Prze-
mys law Pawe lczak, Stjepan Picek, Mathijs de Weerdt and Jan van
Gemert

Reproducibility: Evaluating the Evaluations . 17
Daniel Lopresti and George Nagy

torchdistill: A Modular, Configuration-Driven Framework for
Knowledge Distillation . 28

Yoshitomo Matsubara

RR Results

Spatio-Temporal Convolutional Autoencoders for Perimeter Intrusion
Detection . 47

Devashish Lohani, Carlos Crispim-Junior, Quentin Barthélemy, Sarah
Bertrand, Lionel Robinault and Laure Tougne

Pith Estimation on Tree Log End Images . 66
Rémi Decelle, Phuc Ngo, Isabelle Debled-Rennesson, Frédéric Mothe
and Fleur Longuetaud

Structure and Concept of the Benchmark for Vesselness Filters with
focus on Reproducibilty and Future Evaluations . 86

Jonas Lamy, Bertrand Kerautret, Odyssée Merveille and Nicolas Pas-
sat

Creating Emotion Recognition Algorithms based on a Convolutional
Neural Network for Sentiment Analysis . 101

Ekaterina Tsapina and Vera Ivanyuk

Tree Defect Segmentation using Geometric Features and CNN 115
Florian Delconte, Phuc Ngo, Isabelle Debled-Rennesson, Bertrand Ker-
autret, Thiery Constant and Van-Tho Nguyen

RR Companion Short papers

A Heuristic-Based Decision Tree for Connected Components Labeling
of 3D Volumes: Implementation and Reproducibility Notes 136

Federico Bolelli, Stefano Allegretti and Costantino Grana

3

Reproducibility Aspects of Crack Detection as a Weakly-Supervised
Problem: Towards Achieving Less Annotation-Intensive Crack Detectors . 142

Yuki Inoue

On the Implementation of Planar 3D Transfer Learning for End to End
Unimodal MRI Unbalanced Data Segmentation . 151

Martin Kolarik, Radim Burget, Carlos M. Travieso-Gonzalez and Jan
Kocica

Reproducing the sparse Huffman Address Map compression for deep
neural networks . 157

Giosuè Cataldo Marinò, Gregorio Ghidoli, Marco Frasca and Dario
Malchiodi

Implementation of Genetic Pseudo Rehearsal . 163
Bhasker Sri Harsha Suri and Kalidas Yeturu

Author Index

Author index . 169

4

Program Committee

Pablo Arias ENS Cachan
Fabien Baldacci LaBRI
Jenny Benois-Pineau LaBRI, UMR CNRS 5800 CNRS, University of Bor-

deaux
Ker Ber ker
Arindam Biswas Indian Institute of Engineering Science and Technol-

ogy, Shibpur
Alexandre Boulch valeo.ai
Leszek J Chmielewski Warsaw University of Life Sciences
David Coeurjolly CNRS - LIRIS
Miguel Colom Centre Borelli, ENS Paris-Saclay
Carlos Fernando Crispim-
Junior

Laboratoire de recherche LIRIS / Université
Lumière Lyon 2

Pascal Desbarats LaBRI / University of Bordeaux
Maxime Devanne Université de Haute-Alsace
Philippe Even LORIA
Yukiko Kenmochi LIGM, CNRS
Bertrand Kerautret LIRIS UMR 5205
Adrien Krähenbühl ICube
Jacques-Olivier Lachaud LAMA, University Savoie Mont Blanc
Daniel Lopresti Lehigh University
Vincent Mazet ICube (Université de Strasbourg, CNRS)
Nicolas Mellado Université de Toulouse ; UPS ; IRIT
Odyssée Merveille CREATIS / INSA Lyon
Serge Miguet LIRIS - Université Lumière Lyon 2
Pascal Monasse Imagine, LIGM, Universite Paris-Est
Nelson Monzón López ULPGC
Jean-Michel Morel
Pierre Moulon none
Khadija Musayeva Université Côte d’Azur
Benôıt Naegel ICube, UMR CNRS, Université de Strasbourg
Phuc Ngo Lorraine University – LORIA
Thanh Phuong Nguyen University of Toulon
Nicolas Normand LS2N UMR 6004/Université de Nantes
Nicolas Passat Université de Reims Champagne-Ardenne,

CReSTIC
Fabien Pierre LORIA
Simon Simon ENSICAEN
Isabelle Sivignon GIPSA-lab - CNRS
Robin Strand Uppsala University
Hugues Talbot Université Paris Est
Iuliia Tkachenko LIRIS / Université Lumière Lyon 2
Antoine Vacavant Institut Pascal / Université Clermont Auvergne

5

Jonathan Weber Université de Haute-Alsace
Laurent Wendling LIPADE

6

Additional Reviewers

N

Nagy, George

7

ReproducedPapers.org: Openly teaching and
structuring machine learning reproducibility

Burak Yildiz[0000−0001−9932−4221], Hayley Hung, Jesse H.
Krijthe[0000−0003−3435−6358], Cynthia C. S. Liem[0000−0002−5385−7695], Marco

Loog[0000−0002−1298−8461], Gosia Migut, Frans Oliehoek, Annibale
Panichella[0000−0002−7395−3588], Przemys law Pawe lczak[0000−0002−1302−1148],

Stjepan Picek[0000−0001−7509−4337], Mathijs de Weerdt[0000−0002−0470−6241], and
Jan van Gemert[0000−0002−3913−2786]

Delft University of Technology, Postbus 5, 2600 AA Delft, The Netherlands

Abstract. We present ReproducedPapers.org: an open online reposi-
tory for teaching and structuring machine learning reproducibility. We
evaluate doing a reproduction project among students and the added
value of an online reproduction repository among AI researchers. We use
anonymous self-assessment surveys and obtained 144 responses. Results
suggest that students who do a reproduction project place more value on
scientific reproductions and become more critical thinkers. Students and
AI researchers agree that our online reproduction repository is valuable.

Keywords: Machine Learning · Reproducibility · Online Repository.

1 Introduction

Reproducibility is a cornerstone of science: if an experiment is not reproducible,
we should question its conclusions. Yet, machine learning papers are lacking
reproductions [7,12]. Possible reasons may include a misaligned incentive be-
tween reproducing results and the short-term measures of career success as-
sociated with more ‘wins’ [26] and publishing ‘novel’ work [15]. Nevertheless,
high-impact can be achieved, for instance, when a reproduction fails spectacu-
larly, e.g. [6,8,10,11,14,16,18,19,24]. Yet, these take colossal amounts of manual
effort [1,2,9,22] or massive resources [16,23]. There are venues for publishing
reproductions [3,4,25], which are typically peer-reviewed and thus uphold various
selection standards to guarantee quality. We argue that this emphasis on quality is
a hurdle for sharing light-weight reproductions. Important and useful examples of
light-weight reproductions include partial results, small variants on the algorithm,
hyperparameter sweeps, etc. Low-barrier options are indeed available in workshop
challenges [13,21] organized at conferences such as ICPR, NeurIPS, ICLR, or
ICML. However, such avenues are hard to maintain on a long-term basis, as a
workshop may or may not be organized. We argue that there is a need for a
low-barrier and long-term venue for machine learning reproductions.

A complementary angle on low-barrier reproductions is to improve university
student training. We should teach the next generation of machine learning

8

2 B. Yildiz et al.

practitioners the importance of the reproducibility of research work, as done
in other computer science domains such as computer networking, where results
reproduction is the means to learn new material [30]. Doing a reproduction project
in a course aligns with several important learning objectives for machine learning
students. Among others, students (1) should be able to read, critique, and explain
a scientific paper; (2) implement a method; (3) run, evaluate, investigate, and
extend existing research or code; and (4) write clearly and concisely about code
and methods. A reproduction project also lets students experience differences
between published results and an implementation, which stimulates a critical
attitude and allows reflections on the scientific process.

Fig. 1. A screenshot of ReproducedPapers.org. We allow multiple reproductions of the
same original paper and investigations of several aspects, such as Reproduced, Replicated,
Hyperparameter check, etc. Our online repository is user-centered: its sufficient if a
user sees value in uploading some form of reproduction. Having such a repository is
well-suited for students and adds structure to reproducibility in machine learning.

9

Openly teaching and structuring ML reproducibility 3

In this paper, we align the benefits of an online reproduction repository
with those of teaching reproducibility. We introduce ReproducedPapers.org:
an open, light-weight repository of reproduced papers which flexibly allows any
sort of reproduction work, see Figure 1. This repository benefits the research
community while at the same time being well-equipped at accepting contributions
from students. Although the standard of student reproductions might be lower
than those required for peer reviewed reproductions, they can still give valuable
insights such as clarifying which parts are difficult to implement or identifying the
reproducibility level of elements. Such online reproductions are a low-threshold
portfolio-building opportunity, which in turn may prove a valuable incentive to
start doing more reproductions, as well as an opportunity to facilitate sharing
reproductions that otherwise would not have been shared.

Our online repository shares traits with other light-weight, bottom-up, grass-
roots community efforts such as ArXiv [5], Open Review [28], and Papers with
Code [29]. Other efforts on facilitating reproducibility include software for re-
producible and reusable experiments [20], open specification neural network
diagrams [17], and a framework for automatic parsing of deep learning research
paper to generate the implementation [27]. Similar to these approaches, in our
work, we combine the traits from online repositories with those of tools facilitating
reproducibility by providing an online repository that facilitates teaching as well
as structuring reproducibility.

We make the following contributions. 1. We propose a new online reproduction
repository; 2. We conduct a proof of concept with students from an MSc Deep
Learning course to perform a reproduction project and populate the repository;
3. We evaluate the usefulness of the repository among AI researchers and the
learning objectives among students by anonymous surveys.

2 The online reproduction repository

We performed a proof of concept experiment with a reproducibility project for
students of the MSc Deep Learning course taught by this paper’s last author at
Delft University of Technology (TU Delft). We solicited relevant papers among
university staff and ensured that (i) data is available, (ii) it is clear which table or
figure to reproduce, and (iii) the computational demands are reasonable. Students
were also allowed to themselves suggest a paper to reproduce. On their paper
of choice, they worked in groups of 2 to 4, for 8 weeks, for approximately one-
third of their studying time (i.e., about 13 hours a week). For grading, students
submitted a blog in PDF and also the URL of an online version of their blog
to ReproducedPapers.org to populate the repository. For students who do not
wish to share a blog with the world, we offer a private option, which is only
visible to course administrators. The option to publicly blog about reproducing
machine learning provides an simple opportunity for students to build an online
portfolio while simultaneously incentivizing making reproductions.

10

4 B. Yildiz et al.

Aspect Description

• Replicated A full implementation from scratch without using any pre-
existing code.

• Reproduced Existing code was evaluated.
• Hyperparams check New evaluation of hyperparameter sensitivity.
• New data Evaluating new datasets to obtain similar results.
• New algorithm variant Evaluating a different variant.
• New code variant Rewrote/ported existing code to be more efficient/readable.
• Ablation study Additional ablation studies.

Table 1. Different aspects of reproduction which are highlighted as badges (see Figure 1).

We explicitly allow for light-weight reproduction efforts such as evaluating
existing code, checking only certain parts of the paper, proposing minor variations,
doing hyperparameter sweeps, etc. Our current options (aspects) are shown in
Table 1, and we will add others as the need arises. Authors label their reproduction
with the relevant aspects themselves.

We developed ReproducedPapers.org in-house as a simple web application.
It is implemented by this paper’s first author, and its source code is available on
GitHub1. Registering is necessary only when adding reproductions. Currently,
the repository has 90 registered users and hosts 24 unique papers and 57 paper
reproductions. Most papers have multiple reproductions, and only five repro-
ductions are marked as private. The top-3 most-used aspects are Replicated (32
times); Reproduced (29 times) and Hyperparams check (17 times). Figure 2 whose
data is derived from self-reported blog posts by users shows both success and
failure rates to be around 40%.

1 https://github.com/CVLab-TUDelft/reproduced-papers

0 20 40
Percentage (%)

Unknown

Failed

Partially
successful

Successful

1 2 3 4 5 6 7 8 9 1011121314151617181920212223

Paper ID
0

2

4

6

R

ep
ro

du
ct

io
ns Successful

Partially successful
Failed
Unknown

(a) (b)

Fig. 2. Current ReproducedPapers.org statistics. (a) Reproduction success rates; (b)
Number of reproductions per paper ID.

11

Openly teaching and structuring ML reproducibility 5

Count

(a) Doing a reproduction changed how I view the scientific process.

(b) Doing a reproduction made me more critical of results in scientific papers.

(c) Doing a reproduction made me value reproductions more.

(d) Doing a reproduction was a valuable experience for me.

10 0 10 20 30 40

(e) I would like to do this again.

Strongly disagree Disagree Neutral Agree Strongly agree

Fig. 3. Responses to survey questions from students who contributed to
ReproducedPapers.org. Letting students themselves do a reproduction promotes a
critical mindset (a and b), and teaches the value of scientific reproductions (c). In
addition, the students considered it a positive experience (d,e). We conclude that these
traits align with our learning objectives.

3 Survey analysis

We evaluate student learning objectives and how AI researchers perceive our
online reproduction repository by analyzing the results of small anonymous
surveys for two groups: (i) students who recently added their reproduction to our
repository and (ii) anybody identifying her/himself working in AI. The second
group was invited to the survey through social media and emails. Both groups
share the same questions, where the students have five additional questions to
evaluate education. The survey data is available at ReproducedPapers.org2

We received a total of 144 responses: 43 from course students and 101 from
third-party AI researchers all over the world. Of the latter, 87 identify themselves
as a junior or senior researcher, and 14 as a student.

2 https://reproducedpapers.org/survey-data.zip

12

6 B. Yildiz et al.

3.1 Evaluating student learning objectives

The survey questions and results can be found in Figure 3. We evaluate the
following objectives.

Doing a reproduction project increases critical thinking. Results in
Figure 3(a) show that doing a reproduction taught most students something new
about the scientific process. Figure 3(b) suggests that students become more
critical to published results.

Doing a reproduction project makes students value reproductions
more. The results in Figure 3(c) indicate that after doing a reproduction, a great
majority of students place more value on scientific reproductions.

Students find a reproduction project a positive experience. The
results in Figure 3(d,e) demonstrates that students valued the work and prefer
to do a reproduction more often. Results suggest that having a reproducibility
project teaches skills considered important by both student and teacher.

3.2 Evaluating the AI researcher survey respondents

Figure 4 shows results for the third party AI researchers. We found the following.
The AI researcher survey respondents find online reproductions

valuable. Results in Figure 4(a,d,g) show that students and, especially, re-
searchers find an online reproduction valuable and useful. According to Fig-
ure 4(i), there is no clear preference for doing a reproduction or writing a paper.
Figure 4(e) suggests that the perceived value of reproduction by the community
is smaller for researchers than for students.

The AI researcher survey respondents find an online reproduction
repository valuable. Results in Figure 4(b,c) show that students and re-
searchers appreciate an online reproduction repository. Figure 4(f) shows that
researchers are less likely than students to help contribute by doing reproductions.

The AI researcher survey respondents see an educational role for
courses where students do a reproduction project. Results in Figure 4(h)
show that researchers and students agree that reproduction projects should be
used more often in courses.

Additionally, we make the following observations from Figure 4:
(i) When compared to students, the researchers think the community values

reproductions less (e) and want their own team to work on reproductions less (f).
This may suggest an inverse relationship between perceived value and willingness
to contribute. Yet, when comparing researchers against themselves, most think the
community values reproductions, and most researchers would like to contribute.

(ii) More researchers want their work reproduced (g) than that they are willing
to contribute (f). Can we place our hope on the students as future researchers, as
they are much more willing to contribute?

(iii) There is a clear consensus that reproductions are valuable (a, d, g, i) but
some researchers feel that the community does not reward it enough (e). Therefore,
an important question is how we can change the perception of a low reward for
doing reproductions, beyond repositories as reported on here.

13

Openly teaching and structuring ML reproducibility 7

Percent

Researcher
Student

(a) An online reproduction attempt adds value to the original paper.

Researcher
Student

(b) An online reproduction repository adds value in addition to PapersWithCode.com

Researcher
Student

(c) An online reproduction repository increases the perceived value of doing a reproduction.

Researcher
Student

(d) Before implementing a paper/method, I would consult an online reproduction.

Researcher
Student

(e) Doing a reproduction is perceived as valuable by the community.

Researcher
Student

(f) I would like to contribute by adding a reproduction.

Researcher
Student

(g) I would want others to reproduce my own work.

Researcher
Student

(h) More university courses should have a reproduction project.

Researcher
Student

50 0 50 100

(i) Writing a new paper is more valuable than doing a reproduction.

Strongly disagree Disagree Neutral Agree Strongly agree

Fig. 4. Responses to survey questions by 57 students and 87 self-identified AI re-
searchers. The survey question is in the sub-caption. Researchers and students agree
that: Reproductions are valuable (a, d, g), that an online repository adds value (b, c),
and that more courses should use a reproduction project (h). Researchers differ from
students in that researchers more strongly find a reproduction valuable (a), and would
consult online reproductions more (d). Researchers think a reproduction is valued less
by the community (e) and are less likely to contribute with reproductions (f). Students
and researchers both do not agree among themselves if a new paper is more valuable
then a reproduction (i), suggesting that the answer is ‘it depends’. We conclude that the
respondents welcome an online repository for teaching and structuring reproducibility.

4 Discussion and conclusions

It should be clear that our results and corresponding analysis are rather prelimi-
nary. We are convinced, however, that they warrant low-barrier and long-term so-
lutions accommodating research reproduction. Our ReproducedPapers.org pro-

14

8 B. Yildiz et al.

vides one such outlet. We hope that future analysis of the further accumulated
survey data may sketch an even clearer picture. We hope others consider repro-
ducing our effort.

The main conclusions that we draw at present are the following three. 1.
Doing a reproduction course project aligns well with learning objectives, and
students find it a positive experience. 2. A reproducibility project improves the
perceived value of reproductions, and allowing students to blog online about
their reproduction project offers an extra incentive to do a reproduction. 3. AI
researcher survey respondents are positive about online reproductions and a
reproduction repository.

We finally call on the community to add their reproductions to the website
ReproducedPapers.org and deploy it in courses: may the next generation of
machine learners be reproducers.

References

1. Anand, K., Wang, Z., Loog, M., van Gemert, J.: Black magic in deep learning:
How human skill impacts network training. In: British Machine Vision Conference
(BMVC) (2020)

2. Bonneel, N., Coeurjolly, D., Digne, J., Mellado, N.: Code replicability in computer
graphics. ACM Transactions on Graphics 39(4) (2020)

3. Colom, M., Kerautret, B., Krähenbühl, A.: An overview of platforms for reproducible
research and augmented publications. In: International Workshop on Reproducible
Research in Pattern Recognition. pp. 25–39. Springer (2018)

4. Colom, M., Kerautret, B., Limare, N., Monasse, P., Morel, J.M.: Ipol: a new journal
for fully reproducible research; analysis of four years development. In: 2015 7th
International Conference on New Technologies, Mobility and Security (NTMS).
pp. 1–5. IEEE (2015)

5. Cornell University Library: arxiv. https://arxiv.org (Sep 2011), last accessed:
Jun. 20, 2020

6. Dacrema, M.F., Cremonesi, P., Jannach, D.: Are We Really Making Much Progress?
A Worrying Analysis of Recent Neural Recommendation Approaches. In: Proceed-
ings of the 13th ACM Conference on Recommender Systems (2019)

7. Drummond, C.: Replicability is not reproducibility: Nor is it good science. In:
Evaluation Methods for Machine Learning Workshop at the 26th ICML (2009)

8. Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., Madry,
A.: Implementation Matters in Deep Policy Gradients: A Case Study on PPO and
TRPO. arXiv preprint arXiv:2005.12729 (2020)

9. Fursin, G., Moreau, T., Reddi, V.: Asplos 2020 artifact evaluation report. In: Proc.
ASPLOS. pp. vi–vii. ACM (2020)

10. Gorman, K., Bedrick, S.: We need to talk about standard splits. In: Proceedings
of the 57th annual meeting of the association for computational linguistics. pp.
2786–2791 (2019)

11. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep re-
inforcement learning that matters. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

12. Hutson, M.: Artificial intelligence faces reproducibility crisis. Science 359(6377),
725–726 (2018)

15

Openly teaching and structuring ML reproducibility 9

13. Kerautret, B., Colom, M., Lopresti, D., Monasse, P., Talbot, H.: Reproducible
Research in Pattern Recognition: Second International Workshop, RRPR 2018,
Beijing, China, August 20, 2018, Revised Selected Papers, vol. 11455. Springer
(2019)

14. Lin, J.: The neural hype and comparisons against weak baselines. ACM SIGIR
Forum 52(2), 40–51 (2019)

15. Lipton, Z.C., Steinhardt, J.: Research for practice: Troubling trends in machine-
learning scholarship. Commun. ACM 62(6), 45–53 (May 2019)

16. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are gans created
equal? a large-scale study. In: Advances in neural information processing systems.
pp. 700–709 (2018)

17. Marshall, G., Freitas, A.: The Diagrammatic AI Language (DIAL): Version 0.1.
arXiv preprint arXiv:1812.11142 (2018)

18. Melis, G., Dyer, C., Blunsom, P.: On the state of the art of evaluation in neural
language models. In: International Conference on Learning Representations (2018),
https://openreview.net/forum?id=ByJHuTgA-

19. Musgrave, K., Belongie, S., Lim, S.N.: A metric learning reality check. arXiv preprint
arXiv:2003.08505 (2020)

20. Paganini, M., Forde, J.Z.: dagger: A Python Framework for Reproducible Machine
Learning Experiment Orchestration (2020)

21. Pineau, J., Sinha, K., Fried, G., Ke, R.N., Larochelle, H.: ICLR Reproducibility
Challenge 2019. ReScience C 5(2), 5 (may 2019)

22. Raff, E.: A step toward quantifying independently reproducible machine learning
research. In: NeurIPS. pp. 5486–5496 (2019)

23. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do imagenet classifiers generalize
to imagenet? In: ICML. pp. 5389–5400 (2019)

24. Riquelme, C., Tucker, G., Snoek, J.: Deep bayesian bandits showdown: An empirical
comparison of bayesian deep networks for thompson sampling. In: International
Conference on Learning Representations (2018), https://openreview.net/forum?
id=SyYe6k-CW

25. Rougier, N.P., Hinsen, K.: Rescience c: a journal for reproducible replications in
computational science. In: International Workshop on Reproducible Research in
Pattern Recognition. pp. 150–156. Springer (2018)

26. Sculley, D., Snoek, J., Wiltschko, A., Rahimi, A.: Winner’s Curse? On Pace, Progress,
and Empirical Rigor. In: ICLR workshop (2018), https://openreview.net/forum?
id=rJWF0Fywf

27. Sethi, A., Sankaran, A., Panwar, N., Khare, S., Mani, S.: DLPaper2Code: Auto-
generation of code from deep learning research papers. In: Thirty-Second AAAI
Conference on Artificial Intelligence (2018)

28. Soergel, D., Saunders, A., McCallum, A.: Open scholarship and peer review: a time
for experimentation. In: Proc. ICML (2013)

29. Stojnic, R., Taylor, R.: Papers with code—a facebook AI project. https://

paperswithcode.com (Jul 2018), last accessed: Jun. 20, 2020
30. Yan, L., McKeown, N.: Learning networking by reproducing research results. SIG-

COMM Comput. Commun. Rev. 47(2), 19–26 (Apr 2017)

16

Reproducibility: Evaluating the Evaluations

Daniel Lopresti1[0000-0003-2129-4223] and George Nagy2[0000-0002-0521-1443]

1 Lehigh University, Bethlehem PA 18015, USA
lopresti@cse.lehigh.edu

2 Rensselaer Polytechnic Institute, Troy NY 12180, USA
nagy@ecse.rpi.edu

Abstract. Evaluation is at the heart of reproducibility in research, and the related

but distinct concept of replicability. The difference between the two is whether

the determination is based on the original author’s source code (replicability), or

is independent of the code and based purely on a written description of the

method (reproducibility). A recent study of published machine learning experi-

ments concluded that only two-thirds were reproducible, and that paradoxically,

having access to the source code did not help with reproducibility, even though

it obviously provides for replicability. Reproducibility depends critically, then,

on the quality and completeness of both internal and external documentation.

The growing popularity of competitions at pattern recognition conferences pre-

sents an opportunity to develop and disseminate new best practices for evaluating

reproducibility. As an initial step forward, we collected the final reports and re-

viewed the competition websites associated with recent ICPR and ICDAR con-

ferences. We used this data from 42 competitions to assess current practices and

posit ways to extend evaluations from replicability (already checked by some

competitions) to reproducibility on application-oriented data. We recommend

empirical standards, monitoring competitions, and modified code testing to be

considered and discussed by the research community as we all work together to

advance the desirable goals of conducting and publishing research that achieves

higher degrees of reproducibility. Competitions can play a special role in this

regard, but only if certain changes are made in the way they are formulated, run,

and documented.

Keywords: Pattern recognition research, performance evaluation, reproducibil-

ity.

1 Background

Reproducibility and replicability are critical criteria for evaluating reports of experi-

mental research. While the precise definitions of these two terms is open to debate, and

different scientific disciplines have developed different preferences, here we will adopt

the terminology attributed to the field of Computer Science in a recent National Acad-

emies consensus study [1], i.e., “reproducibility” refers to independent researchers ar-

riving at the same results using their own data and methods, while “replicability” refers

17

2

to a different team arriving at the same results using the original author’s artifacts.”

Interestingly, these definitions are the opposite of those specified for obtaining the “Re-

producible Research” label at the RRPR 2021 workshop [2], an apparent contradiction

anticipated in the National Academics consensus study, which notes that the fields of

Signal Processing and Scientific Computing tend to use this other, flipped set of defi-

nitions. While a seemingly minor detail, this observation can, at times, take on major

significance.

Determining if two sets of experiments obtained the “same” results, mostly similar

results, or significantly different results hinges, of course, on the way the experiments

are evaluated. And while it would be convenient to assume that evaluation is a me-

chanical process that is itself practiced uniformly by everyone working in research, this

is most certainly not the case. This has implications for reproducibility as well.

Best practices in reproducibility in the pattern recognition community can be sum-

marized based on papers presented at conferences like ICPR, and also in the competi-

tions that are now becoming common at conferences. For the most part, published work

contains hints of this when the authors of Paper A write that they have used published

code from the authors of Paper B for comparison purposes, or, alternatively, that they

were “forced” to reimplement an algorithm because the code was not available. We

note that this is a commentary not on the first paper in question (Paper A), but rather

on the paper that it references (Paper B); i.e., it is an indirect measure of reproducibility

that, so far as we know, no one has attempted to study or quantify. Instead of viewing

this as a criticism of the authors of Paper B (for not publicizing their code), it can be

considered a complement (publishing a paper that is clear enough that the idea can be

reimplemented by others). There is also a tacit assumption that the authors of Paper A

have done a good enough job reimplementing the algorithm from Paper B to make for

a “fair” comparison, although, of course, there is an inherent conflict of interest, and

doubts have sometimes been raised about this, often by the (outraged) authors of Pa-

per B. Sometimes authors point out that they are not able to achieve the same level of

performance as was previously published by the original authors; this can be seen as a

positive (operating in the interests of full disclosure), or as a complaint (a suggestion

that the authors of Paper B did not do a good enough job making their work reproduc-

ible). We should also note that simply providing code and data online in a public re-

pository does not by itself satisfy the definition of reproducibility because, as we have

noted, this requires “independent researchers arriving at the same results using their

own data and methods” (more on this later), although it may very well satisfy the defi-

nition of replicability (“a different team arriving at the same results using the original

author’s artifacts”).

2 A Relevant Experiment on Reproducibility

The issue of reproducibility (and the lack thereof) was the focus of a recent study by

Edward Raff [3]. Raff uses “reproducible” and “replicable” interchangeably in his writ-

ing, but performed his initial analysis of 255 published machine learning papers without

looking at the original source code, which satisfies the definition we have adopted for

18

3

“reproducible.” Hence, this is the terminology we will use in summarizing his conclu-

sions here.

Raff found that reported results could be successfully reproduced in only 63.5% of

the cases, a somewhat disturbing outcome for those of us working as researchers in

pattern recognition. He used 26 different features to characterize the selected papers,

broken into three different broad categories: unambiguous features (e.g., features that

are well defined and can be easily counted, like the number of authors, the number of

references, or the publication type: book, journal, conference, workshop, or tech re-

port), mildly subjective features (e.g., the total number of tables in the paper, which as

we know can be somewhat difficult to count, or whether all of the hyperparameters are

completely specified), and subjective features (e.g., the number of “conceptualization”

figures, the algorithm’s difficulty, or the paper’s readability). Raff found 10 features

to be important at a level of statistical significance for predicting reproducibility: read-

ability had the largest impact, but also significant were rigor vs. empirical (whether a

paper is more theoretical or more practical), algorithm difficulty, the presence of pseudo

code, the broad subject area of the paper (e.g., the specific branch of machine learning),

the number of tables (positively correlated with reproducibility) and the number of

equations (negatively correlated with reproducibility), and the computing environment

(higher reproducible rates for work run on a GPU, and lower reproducible rates for

work run on a cluster). The responsiveness of authors to email queries was also signif-

icant in predicting the reproducibility of work reported in their paper.

With some additional work, these observations could form the basis for new evalu-

ation paradigms for reproducibility, a topic worthy of discussion within the pattern

recognition research community, and one of our primary recommendations. But per-

haps the most counter-intuitive conclusion from Raff’s work is his discovery that

whether or not a paper’s authors released their code had no significant relationship to

the paper’s independent reproducibility. He posits that perhaps such authors include

less detail in their papers because they assume readers will find it in their code. It might

seem like authors who release code are signaling that they care more about reproduci-

bility, which makes the lack of a correlation especially surprising. Our conclusion for

efforts such as RRPR’s “Reproducible Label” initiative is that access to and confirma-

tion of a paper’s source code demonstrates replicability, but cannot make claims re-

garding a work’s reproducibility. This same point is almost certainly true of the com-

petitions that have proliferated in the pattern recognition research community. Ac-

knowledging this, we believe it would be useful for the community to have an ongoing

discussion regarding the relative importance of reproducibility and replicability, and to

take actions designed to take quantifiable steps in the direction of improving both of

these measures in our work.

3 Examining Community Practices via Competitions

When it comes to measuring the “status quo” in the community, we have made the

decision, for now, to focus on the competitions (sometimes called “contests”) that take

place at major conferences rather than on individual published papers. Competitions

19

4

can play an important role in fostering reproducibility, but to do so, certain changes

must be made in the way they are organized, run, and documented. We survey current

practices and make recommendations for adapting them. This is based on the premise

that extra care is exercised by authors and by evaluators in setting up and running com-

petitions, so in some sense they should reflect the “best case” scenario, and also because

there are far fewer competitions than published papers to survey, reducing the need to

find an unbiased way to sample a very large population.

Competitions do not have as their traditional focus reproducibility, but they may

insist on replicability by, for example, requiring submission of working code in order

to participate. It could be argued there is little reason to replicate or reproduce a method

that yielded poor results on the tasks set by the competition. This is a different scenario

from publication, where the presumption is that the proposed method is, in some sense,

the best known so far, at least according to the proposers. We see, however, no reason

why competitions could not more explicitly encourage and measure reproducibility in

pattern recognition research, and this is another of the suggestions we offer. In doing

so, competitions could lead the way in establishing best practices that will be more

broadly followed once understood and accepted by the community.

We have gathered data on competitions and contests organized at two of the largest,

most important conferences in our field: The International Conference on Pattern

Recognition (ICPR) and The International Conference on Document Analysis and

Recognition (ICDAR). Both take place every two years, in alternating years (under

normal circumstances). Interestingly, while ICPR is the larger conference often draw-

ing over 1,000 attendees, ICDAR, with around 500 attendees, fields many more com-

petitions: for example, ICDAR 2019 had 27 competitions vs. 4 for ICPR 2018, and

ICDAR 2017 had 25 competitions vs. 7 for ICPR 2016. These large differences can,

of course, be explained by the traditions of the two conference series.1

Here we report what we have discovered about the practices of ICPR and ICDAR

competitions. Our focus is on issues relating to reproducibility and replicability, and

opportunities to inject more of these two considerations into competitions. Prior to

doing our survey, we expected that we would find two common models. In one model,

all of the experiments are performed by the competitors. There is a training set released

well in advance, and a test set that is distributed with a limited amount of time to report

results back to the competition organizers. The other model is that competitors must

submit their code to the conference organizers who will then run it on new, previously

unseen data. Even the latter is, at best, evidence of replicability, not reproducibility.

The former tells us nothing, really, about either. However, it is possible the competition

organizers will have made a separate effort to read and analyze an accompanying paper

to try to verify whether the reported experimental results are “plausible.” We looked

for evidence of this in the published competition reports and on associated websites.

1 While ICPR and ICDAR seemed to us to be two obvious candidates to study, as noted by one

of the reviewers there are, of course, many other relevant examples that may be instructive to

consider, including Kaggle, the KITTI Vision Benchmark Suite, ImageNet, and repro-

ducedpapers.org, among others.

20

5

Since it seems unlikely competition organizers would independently implement

methods published in a paper due to the amount of work that would be involved, what

might it mean when they take code provided by a competitor and run in on new data,

obtaining results that appear consistent with what the competitor has demonstrated

through their own experiments? Could this be called a weak form of “reproducibility”?

Perhaps a better term would be “robustness” or “generalizability.” This makes a case

for competitions that push algorithms to the edge of breaking, otherwise what is learned

from the competition does not substantially improve on what already appears in pub-

lished work by the competitors or other authors.

It is also possible to imagine competitions that truly measure reproducibility. While

requiring more work, this would likely provide much more value to the community.

Much of the programming required by participation in a competition already devolves

to Ph.D. students. Attempting to reproduce published work seems like another ideal

task for students and early career researchers, many of whom are already doing this

anyway as part of their entry into the field (perhaps such efforts could also include

retired experts who still wish to remain connected to the community, as suggested by

one of the reviewers of this paper). As of now, important work like this receives little

credit within the research community, but new forms of recognition seem possible,

maybe even publication credit or awards, for those who support competitions by eval-

uating and reporting on the reproducibility of published methods. This is another one

of our suggestions for advancing the field.

Our survey results for the ICPR and ICDAR competitions are presented in Table 1.

We evaluated the following features in each case:

• Announced Competitions: as per the main conference website.

• Held Competitions: competitions that actually took place, as evidenced by

a written report. As can be seen, of the announced competitions, only 67%

were actually held. The remainder were cancelled. In most cases the can-

cellations are indicated explicitly, often on the competition webpage, but

sometimes even this minimal information is missing and it is only the lack

of a website or a report that indicates it was cancelled.

All the rest of the percentages below are calculated relative to the competitions that

were held, not the number that was originally announced:

• Competition Website - Active: whether the competition website still re-

sponds with valid information about the competition. This is true for 78%

of the competitions.

• Competition Website - Competition Reproducible: whether (in our judge-

ment) the competition protocol could be reproduced based purely on infor-

mation present on the website. This is true for 71% of the competitions

(clearly if the website is no longer responsive, the competition cannot be

reproduced from the website).

• Final Report - In Proceedings: whether the final report was published in

the conference proceedings. This is true for 93% of the competitions.

While clearly it is desirable for 100% of the reports to be published in the

proceedings, whether it is feasible depends on the interplay between publi-

cation deadlines and the timing of the competitions.

21

6

• Final Report - On Website: even with the report appearing in the confer-

ence proceedings, it would seem to be valuable to also include it on the

website, but we found only 14% of the final reports are on the competition

websites. (Sometimes there are graphs of the final results on the website,

but no written analysis – we counted this only if the final written report, or

something close to it, was on the website.)

• Final Report - Competition Reproducible: a companion to the information

appearing on the website, this answers the question whether the competition

can be reproduced by what appears in the written report. This was true for

83% of the competitions. We found that sometimes the written report does

a better job in this regard, and other times the website does a better job.

Conference

ICDAR ICPR
Total

 2019 2017 2018 2016

Status

Announced
Competitions

27 25 4 7 63

Held Competitions 18 17 3 4 42

Competition
Website

Active 16 11 2 4 33

Competition
Reproducible

15 9 2 4 30

Final Report

In Proceedings 17 17 3 2 39

On Website 3 3 0 0 6

Competition
Reproducible

17 14 2 2 35

Entries Repro-
ducible

Some 16 11 2 2 31

All 1 0 0 1 2

Tests Run By?

Participants 16 15 3 2 36

Organizers 2 2 0 2 6

Code Required? 5 4 0 2 11

Public Data?

Some Data 8 6 1 3 18

All Data 5 6 1 3 15

With Registration 10 7 1 0 18

Public Source
Code?

Some Code 6 5 0 0 11

All Code 0 0 0 0 0

Table 1. Survey of ICDAR and ICPR competitions.

• Entries Reproducible - Some: whether, in our judgement, sufficient infor-

mation is included for at least some of the contest entries to be able to re-

produce them. This will often mean a reference to a full length published

paper describing the method, sometimes supplemented by the source code

on a public repository. Entries judged not to be reproducible are described

only very briefly – often in a short paragraph using only very general terms

(e.g., “we used a Recurrent Neural Network”). In a few cases, there is no

description of a method whatsoever. We determined that for 74% of the

22

7

competitions, at least some of the entries were reproducible. If just one

entry in a competition was judged reproducible, we would count it here.

• Entries Reproducible - All: using the same criteria as above, but requiring

all of the entries to be described in sufficient detail to be able to reproduce

each one of them. Of the 42 competitions we studied, only two of them

provided enough information to reproduce all of the entries (one each from

ICDAR 2019 and ICPR 2016). This is a major area for improvement we

recommend moving forward.

• Tests Run By? Participants: the competition participants ran their own

code and submitted results to the organizers to be judged.

• Tests Run By? Organizers: in a few notable cases, the competition required

entrants to submit code in one of a number of standard formats to the or-

ganizers which they then ran. This was true for 14% of the competitions.

• Tests Run By? Code Required?: in this case, the competition rules state

that entrants must provide their code to the organizers. While this might

seem to be identical to the previous measure, some competitions require

participants to run their own code and submit results for judging, and also

to submit their code for “verification.” This is a good idea. However, we

were unable to find explicit statements in the reports or on the websites for

those competitions suggesting that the code had actually been verified. We

believe it would be improper to take the lack of any sort of comment as

confirmation the verification had been performed and passed. We suggest

an explicit affirmation should always be included.

• Public Data? Some Data: at least some of the data used for the competition

is public via links on the website or in the report. In some cases, competi-

tions claim to be using public data, and this may in fact be true, but if a link

was not provided to confirm accessibility, we did not call it public.

• Public Data? All Data: all of the data used for the competition is public

via links on the website or in the report. Only 36% of the competitions

make all of their data public, at least at the time of this writing.

• Public Data? With Registration: a number of the competition websites

state that the data can be obtained only after registering for the competition.

This may or may not be accompanied by a claim that public data is being

used (e.g., it is data from a digital library), but if registration is required,

then the data is hidden behind a “wall” and not truly public.

• Public Source Code? Some Code: source code for at least some of the

entrants is available on a public website (e.g., GitHub) linked by the com-

petition. This is true for 26% of the competitions. Note that just because

code is required by the competition, the code is not necessarily made public.

(In some cases, the organizers took executable code and not source code.)

• Public Source Code? All Code: source code from all of the competitors is

available on a public website linked by the competition. This was not the

case for any of the 42 competitions. There is, of course, a tension here

between allowing companies to participate in competitions while protecting

23

8

their intellectual property on the one hand, and encouraging the open shar-

ing of ideas which is the hallmark of reproducible research on the other.

In conducting our survey, we experienced a number of frustrations that can also be

seen as negatively impacting reproducibility. This included links to competition web-

sites that no longer work, and links that work but now point to new, completely different

activities with no hint of the previous competition. We found one published report that

described the setup of the competition, but did not provide any of the results. Another

final report was published in an unrelated journal, but not in the associated conference

proceedings. We saw reports that only vaguely identified the contest participants, let

alone provide sufficient details for reproducibility. Finally, there were a couple com-

petitions that failed to generate outside interest for some of the tasks, so there was no

real “contest,” but the organizers still produced results to include in the report by run-

ning their own code.

While all the competitions did a good job describing their evaluation metrics, many

of them were not completely clear on the data they used, often only generally referenc-

ing drawing it from a larger collection (e.g., a digital library) and sometimes including

a small set of sample images on the website. Surprisingly, it also sometimes required

some digging to determine that participants ran their own code – this seems to be a tacit

assumption that was not always explained clearly.

Our survey was admittedly simple and limited in its scope to what was publicly vis-

ible at a time well after the competitions took place. We suspect some important infor-

mation was only conveyed via email exchanges between the organizers and the com-

petitors, and never recorded anywhere else. This seems like a reasonable expediency,

but it hurts later reproducibility; all of the details ought to be fully documented.

Competitions are becoming increasingly popular and play a valuable role in confer-

ences such as ICPR and ICDAR. They have the power to focus attention on problems

the community considers important, and to drive the field forward. Our colleagues who

devote substantial time and effort to organizing these activities rarely receive credit

commensurate with the workload they take on. Nothing in our analysis is meant to be

critical of the contributions that have been made so far, but rather an attempt to rally

the community around developing best practices for reproducibility. Competitions

could play a valuable role in this regard, if more attention is focused on the details.

4 Empirical Standards Favoring Reproducibility

As we have noted, readability was found to be the most critical factor by Raff in his

work on reproducibility. Building on this, we might imagine developing a “best prac-

tices checklist” to be used by authors when they writeup their results, and by reviewers

when evaluating submissions for conferences and journals.

In our search for additional clarity, we find it instructive to turn to a series of recent

best practices discussions that have taken place in the programming language commu-

nity (ACM SIGPLAN), resulting in a set of Empirical Evaluation Guidelines which are

24

9

formulated as a single page (poster-format) “checklist” proposed for use when evaluat-

ing papers for publication [4]. Similar discussions having been taking place in the fields

of software engineering [5] and computer graphics [6].

One community exercise that is interesting to ponder would be building on the

SIGPLAN checklist, keeping aspects considered useful in pattern recognition research,

and deleting or modifying those which do not apply as currently stated. The goal would

be to advance reproducibility beyond its current levels, without creating too great an

added burden on already busy reviewers, conference chairs, and editors.

5 Program Integrity and External Dependencies

Program bugs can, of course, introduce security risks as well as hamper reproduci-

bility. They are seldom revealed by replication on the same data. Among the many

tools available for detecting bugs, fuzz testing with random inputs is attracting much

current attention [5]. These tools are not specific to document image analysis, where

more targeted variations in input are desirable. For example, egregious paragraphs

consisting of only a few words, mathematical formulas or unusual page-breaks may

affect segmentation and layout analysis. Some scanners exhibit ambient light leaks

resulting in border noise. (Even the same scanner generates different bitmaps on suc-

cessive scans of the same page.)

Classification results may depend on language-specific libraries like equation solv-

ers. Therefore, reproducibility studies should include, beside broad test data, diverse

transducers (scanners or cameras) and platforms (languages and compilers). Should

they also require directions for sampling a new data source, dividing the sample into

training, validation, and test sets, and rebuilding the classifier from scratch? Experi-

ments involving human-computer interaction add further dimensions of subject, train-

ing, and protocol variability. Similar observations apply beyond the field of document

analysis, of course, extending across the broad domain of pattern recognition research.

6 Suggestions for Further Action

Note that these recommendations are intended as jumping off points for further discus-

sion, not set-in-stone policies for changing the community’s current practices. Sugges-

tions like this can serve as a basis for organizing competitions and reviewing papers, as

well as for conducting experiments and writing them up for publication. As noted by

the members of the SIGPLAN community [4]: “The goal of the checklist is to help

authors produce stronger scholarship, and to help reviewers evaluate such scholarship

more consistently. Importantly, the checklist is … meant to support informed judg-

ment, not supplant it. The committee’s hope is that this checklist can put all members

of the community literally on the same page.” We would echo the same goal for any

similar effort within our own community.

We also note that not all attempts at building evaluation check-lists are equally help-

ful: if verbosity is not carefully managed, then simply attempting to read, understand,

and apply the checklist becomes a chore in itself; this is one reason the authors of the

25

10

SIGPLAN effort strove to fit their checklist on a single (albeit dense) page (for com-

parison, contrast this with the 59-page SIGSOFT effort [6]). At its heart, evaluation for

reproducibility is a human factors activity, and consideration for the reviewer must be

front and center.

The concept of reproducibility overlaps that of generalizability. Will a method that

gives satisfactory results on selected data also work well enough on hitherto unseen

application streams? All test data samples that we have seen are basically convenience

samples, not population samples. The multitude of digital images, even when consid-

ering only document images in a specific category, discourages credible sampling.

Web crawls collect huge samples, but cannot yet formulate descriptors accurate enough

for reliable evaluations of generalizability beyond tiny and arbitrary test sets. Is it time

to design and develop a web-scale census?

Finally, as we noted in our competition survey, evaluations for evaluating reproduc-

ibility must themselves be reproducible via archival publication of clear, complete, ob-

jective protocols. As much experimental science proceeds without theoretical founda-

tions, the evaluation of any such process (the original experiment, assessment of its

reproducibility, evaluation of this assessment, …) must be open to external scrutiny.

Empirical standards for evaluating the evaluations, ad libitum?

We expect topics like these will remain an ongoing, productive discussion within the

pattern recognition research community, as reflected by the RRPR workshop.

7 Acknowledgements

We thank the reviewers for their carefully considered feedback and helpful comments,

many of which we have included in the present version of this paper.

References

1. National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility and

Replicability in Science. Washington, DC: The National Academies Press.

https://doi.org/10.17226/25303.

2. Third Workshop on Reproducible Research in Pattern Recognition (RRPR 2020). Repro-

ducible Label. https://rrpr2020.sciencesconf.org/resource/page/id/5, last accessed

2020/10/16.

3. Raff, E. A Step Toward Quantifying Independently Reproducible Machine Learning Re-

search. In Proceedings of the 33rd Conference on Neural Information Processing Systems

(NeurIPS), pp. 5,485—5,495. Curran Associates, Inc., Vancouver, Canada (2019).

https://papers.nips.cc/paper/8787-a-step-toward-quantifying-independently-reproducible-

machine-learning-research, last accessed 2020/10/16.

4. Berger, E. D., et al. ACM SIGPLAN Empirical Evaluation Guidelines (2018).

https://www.sigplan.org/Resources/EmpiricalEvaluation/, last accessed 2020/10/13.Klees,

G., et al. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-

nications Security, Association for Computing Machinery (2018).

https://dl.acm.org/doi/proceedings/10.1145/3243734, last accessed 2020/11/1.

26

11

5. Ralph, P., et al. ACM SIGSOFT Empirical Standards (2020). https://github.com/acmsig-

soft/EmpiricalStandards, last accessed 2020/11/1.

6. Bonneel N., et al. Code Replicability in Computer Graphics. ACM Transactions on

Graphics (Proceedings of SIGGRAPH 2020), 39:4. https://replicability.graphics/

27

torchdistill: A Modular, Configuration-Driven
Framework for Knowledge Distillation

Yoshitomo Matsubara1[0000−0002−5620−0760]

University of California, Irvine, CA 92697, USA yoshitom@uci.edu

Abstract. While knowledge distillation (transfer) has been attracting attentions
from the research community, the recent development in the fields has heightened
the need for reproducible studies and highly generalized frameworks to lower
barriers to such high-quality, reproducible deep learning research. Several re-
searchers voluntarily published frameworks used in their knowledge distillation
studies to help other interested researchers reproduce their original work. Such
frameworks, however, are usually neither well generalized nor maintained, thus
researchers are still required to write a lot of code to refactor/build on the frame-
works for introducing new methods, models, datasets and designing experiments.
In this paper, we present our developed open-source framework built on PyTorch
and dedicated for knowledge distillation studies. The framework is designed to
enable users to design experiments by a declarative PyYAML configuration file,
and helps researchers complete the recently proposed ML Code Completeness
Checklist. Using the developed framework, we demonstrate its various efficient
training strategies, and implement a variety of knowledge distillation methods.
We also reproduce some of their original experimental results on the ImageNet
and COCO datasets presented at major machine learning conferences such as
ICLR, NeurIPS, CVPR and ECCV, including recent state-of-the-art methods. All
the source code, configurations, log files and the trained model weights are pub-
licly available at https://github.com/yoshitomo-matsubara/torchdistill.

Keywords: Knowledge distillation · Open source framework · Reproducibility.

1 Introduction

Deep learning methods have been achieving state-of-the-art performances, contributing
to the rapid development of applications for a variety of tasks such as image classi-
fication [10,22,40,42] and object detection [34,9,4]. One of the critical problems with
such state-of-the-art models is their complexity, thus the complex models are difficult to
be deployed for real-world applications. In general, there is a trade-off between model
complexity and inference performance (e.g., measured as accuracy), and there are three
different types of method to make models deployable: 1) designing lightweight models,
2) model compression/pruning, and 3) knowledge distillation. Lightweight models such
as MobileNet [37,13], MnasNet [39] and YOLO series [32,33] often sacrifice inference
performance to reduce inference time, compared to complex models e.g., ResNet [10]
and Mask R-CNN [9]. Model compression and pruning [8,20] techniques reduce model
size by quantizing model parameters and pruning redundant neurons, and many of such
methods are covered by Distiller [53], an open-source library for model compression.

28

2 Y. Matsubara

Table 1: Knowledge distillation frameworks. torchdistill supports modules in PyTorch
and torchvision such as loss, datasets and models. ImageNet: ILSVRC 2012 [36], YT
Faces: YouTube Faces DB [46], MIT Scenes: Indoor Scenes dataset [31], CUB-2011:
Caltech-UCSD Birds-200-2011 [44], Cars: Cars dataset [17], SOP: Stanford Online
Products [26]. P: Pretrained models, M: Module abstraction, D: Distributed training.

Framework Supported datasets Models P M D
Zagoruyko & Komodakis [51] CIFAR-10, ImageNet Hard-coded X

Passalis & Tefas [28] CIFAR-10, YT Faces Hard-coded
Heo et al. [11] CIFAR-10, MIT scenes Hard-coded X
Park et al. [27] Cars, CUB-2011, SOP Hard-coded
Tian et al. [41] CIFAR-100 Hard-coded X
Yuan et al. [50] CIFAR-10, -100, Tiny ImageNet Hard-coded X
Xu et al. [48] CIFAR-100 Hard-coded X
torchdistill torchvision* torchvision* X X X

* torchdistill supports those implemented with PyTorch. In this paper, our focus is on torchvision.

In this paper, our focus is on the last category, knowledge distillation, that trains a
simpler (student) model to mimic the behavior of a powerful (teacher) model. Knowl-
edge distillation [12] stems from the study by Buciluǎ et al. [3], that presents a method
to compress large, complex ensembles into smaller models with small loss in inference
performance. Interestingly, Ba and Caruana [2] report that student models trained to
mimic the behavior of the teacher models (soft-label) significantly outperform those
trained on the original (hard-label) dataset. Following these studies, knowledge distil-
lation and transfer have been attracting attention from the research communities such
as computer vision [35] and natural language processing [38].

As summarized in Table 1, some researchers voluntarily publish their knowledge
distillation frameworks e.g., [51,28,11,27,41,48] to help other researchers reproduce
their original studies. However, such frameworks are usually not either well general-
ized or maintained to be built on. Besides, Distiller [53] supports only one method
for knowledge distillation, and Catalyst [16] is a framework built on PyTorch with a
focus on reproducibility of deep learning research. To support various deep learning
methods, these frameworks are well generalized, yet require users to hardcode (reim-
plement) critical modules such as models and datasets, even if the implementations are
publicly available in popular libraries, to design complex knowledge distillation exper-
iments. As pointed out by Gardner et al. [6], reference methods and models are often
re-implemented from scratch, and this makes it difficult to reproduce the reported re-
sults. For further advancing the deep learning research, a new generalized framework
is therefore needed, and the framework should be able to allow researchers to easily
try different modules (e.g., models, datasets, loss configurations), implement various
approaches, and take care of reproducibility of their work.

29

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation 3

The concept of our developed framework, torchdistill,1 is highly inspired by Al-
lenNLP [6], a platform built on PyTorch [29] for research on deep learning methods in
natural language processing. Similar to AllenNLP, torchdistill supports the following
features:

– module abstractions that enable researchers to write higher-level code for experi-
ments e.g., model, dataset, optimizer and loss,

– declarative PyYAML configuration files, which can be seen as high-level sum-
maries of experiments (training and evaluation), enable to use anchors and aliases
in the file to refer to the same object (e.g., file paths) and simplify themselves, and
make it easy to change the abstracted components and hyper-parameters, and

– generalized reference code and configurations to apply and extend existing knowl-
edge distillation methods to PyTorch and torchvision models pretrained on well-
known complex benchmark datasets: ImageNet (ILSVRC 2012) [36] and COCO
2017 [21].

Furthermore, torchdistill supports 1) seamless multi-stage training, 2) caching teacher’s
outputs, and 3) redesigning (pruning) teacher and student models without hard-coding
(reimplementation). To the best of our knowledge, this is the first, highly generalized
open-source framework that can support a variety of knowledge distillation methods,
and lower barriers to high-quality, reproducible deep learning research. Researchers
can explore methods and shape new approaches, building on this generalized frame-
work that makes it easy not only to customize existing methods and models, but also
introduce completely new ones. Using some of our reimplemented methods, we also re-
produce the experimental results on ILSVRC 2012 and COCO 2017 datasets reported
in the original studies.

2 Framework Design

Our developed framework, torchdistill, is an open source framework dedicated for
knowledge distillation studies, built on PyTorch [29]. For vision tasks such as image
classification and object detection, the framework is designed to support torchvision,
that offers a lot of options for datasets, model architectures and common image trans-
formations. The collection of supported reference models and datasets in our framework
are dependent on the version of user’s installed torchvision. For instance, when users
find new models in the latest torchvision, they can shortly try the models simply by up-
dating the torchvision and configuration files for their experiments with our framework.

2.1 Module Abstractions

An objective of module abstractions in our framework is to enable researchers to experi-
ment with various modules by simply changing a PyYAML configuration file described
in Section 2.3. We focus abstraction on critical modules to experiment, specifically
model architectures, datasets, transforms, and losses to be minimized during training.

1 https://github.com/yoshitomo-matsubara/torchdistill

30

4 Y. Matsubara

These modules are often hard-coded (See Appendix A for details) in authors’ published
frameworks [51,28,11,27,41,48], and many of the hyperparameters are hard-coded as
well.

Model architectures: torchvision offers various model families for vision tasks from
AlexNet [19] to R-CNNs [34,9], and many of them are pretrained on large benchmark
datasets. Specifically, the latest release (v0.7.0) provides about 30 image classification
models pretrained on ImageNet (ILSVRC 2012) [36] and 3 object detection models pre-
trained on COCO 2017 [21]. As our framework supports torchvision for vision tasks,
researchers can use such pretrained models as teacher models for experiments. In addi-
tion to the pretrained models available in torchvision, they can use their own pretrained
model weights and any model architectures implemented with PyTorch.

Datasets: As described above, torchvision also supports a variety of datasets, and pre-
vious studies [35,49,51,28,15,11,27,45,1,23,30,43,41] use many of them to validate
proposed distillation techniques such as ImageNet [36], COCO [21], CIFAR-10 and
-100 [18], and Caltech101 [5]. Similar to model architectures, torchdistill supports
such datasets and can collaborate with any datasets implemented with PyTorch.

Transforms: In vision tasks, there are de facto standard image transform techniques.
Taking image classification on the ImageNet dataset as an example, a standard trans-
form pipeline for training with torchvision2 consists of 1) making a crop of random
size of the original size and with a random aspect ratio of the original aspect ratio, 2)
horizontal reflection with 50% chance for data augmentation to reduce a risk of overfit-
ting [19], 3) PIL-to-Tensor conversion, and 4) channel-wise normalization using (0.485,
0.456, 0.406) and (0.229, 0.224, 0.225) as means and standard deviations, respectively.
In torchdistill, users can define their own transform pipeline in a configuration file.

Losses: In distillation process, student models are trained using outputs from teacher
models, and the research community has been proposing a lot of unique losses with-
/without task-specific losses such as cross entropy loss for classification tasks. Py-
Torch [29] supports various loss classes/functions, and simple distillation losses can be
defined in a configuration file by combining such supported losses using torchdistill’s
customizable loss module (See Section 2.6).

2.2 Registry

The registry is an important component in torchdistill as abstracted modules are in-
stantiated by mapping strings in the configuration file to the objects in code. Further-
more, it would make it easy for users to collaborate their implemented modules/func-
tions with this framework. Similar to AllenNLP [6] and Catalyst [16], this can be done
even outside the framework by using a Python decorator. The following example shows
that a new model class, MyModel, is added to the framework by simply using @regis-
ter model (defined in the framework), and the new class can be instantiated by defining
“MyModel” with required parameters at designated places in a configuration file.

2 https://github.com/pytorch/vision/blob/master/references/classification/train.py

31

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation 5

@register model
class MyModel(nn.Module):

def init (self, *args, **kwargs):
super(). init ()
self.conv1 = nn.Conv2d(**kwargs[’conv1 kwargs’])
...

2.3 Configurations

An experiment can be defined by a PyYAML configuration file, that allows users to tune
hyperparameters, and change methods/models without hard-coding. With PyYAML’s
features, configuration files allow users to leverage anchors and aliases, and these fea-
tures would be helpful to simplify the configurations in cases that users would like
to reuse parameters defined in the configuration file such as root directory path for
datasets, parameters and model names as part of checkpoint file paths for better data
management. In a configuration file, there are three main components to be defined:
datasets, teacher and student models, and training. Each of the key components is de-
fined by using abstracted and registered modules described in Sections 2.1 and 2.2. A
configuration file gives users a summary of the experiment, and shows all the param-
eters to reproduce the experimental results except implicit factors such as hardware
specifications used for the experiment.

The following example illustrates how to define a global teacher model declared
in a PyYAML configuration file. As described in the previous sections, various types
of modules are abstracted in our framework, and such modules (classes and functions)
in user’s installed torchvision are registered. In this example, ’resnet34’ function3 is
used to instantiate an object of type ResNet by using a dictionary of keyword arguments
(**params). i.e. num classess = 1000 and pretrained = True are given as arguments
of ’resnet34’ function. For image classification models implemented in torchvision or
those users add to the registry in our framework, users can easily try different models
by changing ’resnet34’ e.g., ’densenet201’ [14], ’mnasnet1 0’ [39]. Besides that, ckpt
indicates the file path of checkpoint, that is ’./resnet34.pt’ in the example defined by
leveraging some of YAML features: anchors (&) and aliases (*). For teacher model,
the checkpoint will be used to initialize the model with user’s own model weights if
the checkpoint file exists. Otherwise, ’resnet34’ in this example will be initialized with
torchvision’s pretrained weights for ILSVRC 2012.

t eacher mode l :
name: &t e a c h e r ’ r e s n e t 3 4 ’
params:

num classes : 1000
p r e t r a i n e d : True

ckpt : ! j o i n [’ . / ’ , * t e a c h e r , ’ . p t ’]

Furthermore, torchdistill offers an option to generate log files that monitor the ex-
periments. For instance, a log file presents what parameters were used, when executed,

3 https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.resnet34

32

6 Y. Matsubara

the trends of training behavior (e.g., training loss, learning rate and validation accuracy)
at a frequency set in the configuration file, and evaluation results.

These configuration and log files4 will also help the researchers complete ML Code
Completeness Checklist,5 that was recently proposed to facilitate reproducibility in the
research community as part of the official code submission process at major machine
learning conferences e.g., NeurIPS, ICML and CVPR.

2.4 Dataset Wrappers

To support a wide variety of knowledge distillation methods, dataset is an important
module to be generalized. Usually, the dataset module in PyTorch and torchvision re-
turns a pair of input batch (e.g., collated image tensors) and targets (ground-truth) at
each iteration, but some of the existing knowledge distillation approaches require ad-
ditional information for the batch. For instance, contrastive representation distillation
(CRD) [41] requires an efficient strategy to retrieve a large number of negative samples
in the training session, that requires the dataset module to return an additional object
(e.g., negative sample indices). To support such extensions, we design dataset wrappers
to return input batch, targets, and a supplementary dictionary, that can be empty when
not used. For the above case, the additional object can be stored in the supplementary
dictionary, and used when computing the contrastive loss. This design also enables us
to support caching teacher model’s outputs against data indices in the original dataset
so that teacher’s inference can be skipped by caching (serializing) outputs of the teacher
model given a data index at the first epoch, and reading and collating the cached outputs
given batch of data indices at the following epochs.

To demonstrate that caching improves training efficiency, we perform an experiment
with knowledge distillation [12] illustrated in Fig. 1a that caches outputs of the teacher
model at the first epoch for training ResNet-18 (student) on ILSVRC 2012 dataset, and
skips the teacher model’s inference by loading and feeding the outputs cached on disk
to the loss module. Table 2 suggests that spending an extra one-minute at the 1st epoch
to serialize teacher’s outputs, the caching strategy makes the following training process
(i.e. from the 2nd epoch) approximately 1.23 – 2.11 times faster at epoch-level when
using 3 NVIDIA GeForce RTX 2080 Ti‘s with batch size of 256. Also, this improve-
ment becomes more significant when using a larger teacher model such as ResNet-152
(approximately 2.11 times faster than training without cache). The ILSVRC 2012 train-
ing dataset consists of approximately 1.3 million images, and the cached files consumes
only 10GB whereas the original training dataset uses about 140GB. Note that caching
may not improve the training efficiency if teacher’s outputs to be cached are much
larger e.g., hint-based training [35] requires intermediate outputs from teacher and stu-
dent models. Also, this mode should be turned off when applying data augmentation
strategies.

4 Available at https://github.com/yoshitomo-matsubara/torchdistill/tree/master/configs/.
5 https://github.com/paperswithcode/releasing-research-code

33

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation 7

A
vg

. P
oo

l.,
Li

ne
ar

C
on

v,
 B

at
ch

 N
or

m
.,

R
eL

U
, M

ax
 P

oo
l.

A
vg

. P
oo

l.,
Li

ne
ar

C
on

v,
 B

at
ch

 N
or

m
.,

R
eL

U
, M

ax
 P

oo
l.

Teacher Model (ResNet-34)

Student Model (ResNet-18)
Labels

Frozen module Trainable module

Loss

(a) Knowledge distillation [12] using ResNets-
34 and -18 as teacher and student models, re-
spectively.

A
vg

. P
oo

l.,
Li

ne
ar

C
on

v.
, B

at
ch

 N
or

m
.,

R
eL

U
, M

ax
 P

oo
l.

A
vg

.
P

oo
l.,

Li
ne

ar

C
on

v,
 B

at
ch

 N
or

m
.,

R
eL

U
,

M
ax

 P
oo

l.

Teacher Model (ResNet-34)

Student Model (ResNet-18)

C
on

v.

LossRegressor

(b) Hint-training with an auxiliary module
(convolutional regressor) as stage 1 of FitNet
method [35]. Stage 2 is knowledge distillation
as illustrated in Figure 1a.

Fig. 1: Knowledge distillation and FitNet methods. Yellow and blue modules indicate
that their parameters are frozen and trainable, respectively.

Table 2: Epoch-level training speed improvement by caching teacher’s outputs at the
1st epoch, using ResNet-18 as student model for knowledge distillation [12].

Teacher ResNet-34 ResNet-50 ResNet-101 ResNet-152
No cache 801 sec 1,030 sec 1,348 sec 1,944 sec

Cache (1st) 859 sec 1,079 sec 1,402 sec 1,966 sec
Cache (2nd) 651 sec 649 sec 656 sec 917 sec

2.5 Teacher and Student Models

Teacher-Student pairs are keys in knowledge distillation experiments, and recently pro-
posed approaches [35,49,51,11,1,30,41,48,52] introduce auxiliary modules, which are
used only in training session. Such auxiliary modules use tensors from intermediate
layers in models, and introducing the modules to the models often results in branching
their feedforward path as shown in Figs. 1 and 2. This paradigm, however, is also one of
the backgrounds that researchers decide to hard-code the models (e.g., modify the orig-
inal implementations of models in torchvision every time they change the placement
of auxiliary modules for preliminary experiments) to introduce such auxiliary modules
used for their proposed methods, and make it difficult for other researchers to build on
the published frameworks [51,28,11,27,41,48].

Taking an advantage of forward hook paradigm in PyTorch [29], torchdistill sup-
ports introducing such auxiliary modules without altering the original implementations
of the models. Specifically, users can register the framework’s provided forward hooks
to specific modules to store its input and/or output in a I/O dictionary by specifying the

34

8 Y. Matsubara

A
vg

.
P

oo
l.,

Li
ne

ar

C
on

v,
 B

at
ch

 N
or

m
.,

R
eL

U
, M

ax
 P

oo
l.

Teacher Model (ResNet-34)

Loss

Paraphraser

(a) 1st stage: training paraphraser for teacher model.

A
vg

.
P

oo
l.,

Li
ne

ar

C
on

v,
 B

at
ch

 N
or

m
.,

R
eL

U
, M

ax
 P

oo
l.

A
vg

.
P

oo
l.,

Li
ne

ar

C
on

v,
 B

at
ch

 N
or

m
.,

R
eL

U
, M

ax
 P

oo
l.

Teacher Model (ResNet-34)

Student Model (ResNet-18)
Labels

Loss

Loss

Paraphraser

Translator

(b) 2nd stage: training student model and translator, using labels and outputs
of paraphraser’s middle layer.

Fig. 2: Factor transfer with two auxiliary modules.

module paths (e.g., “conv1” for a MyModel object in Section 2.2) in the configuration
files. The I/O dictionaries for teacher and student models will be fed to a generalized,
customizable loss module described in Section 2.6.

For methods that not only require to extract the intermediate outputs (See Fig. 1) but
also feed the extracted outputs to trainable auxiliary modules in different branches to be
processed (See Fig. 2b), we define a special module in the framework, that is designed
to have a post-forward function. In Fig. 1, for instance, the framework first executes
ResNet-18 and extracts intermediate output by a registered forward hook, and then the
extracted output stored in the student’s I/O dictionary will be fed to the regressor as
part of the post-forward process. The concept of the special module gives users more
flexibility in designing training methods while leaving the original implementations of
models (ResNets-34 and -18 in Fig. 2) unaltered.

2.6 Customizable Loss Module

Leveraging the I/O dictionaries that contain input/output of specific modules with reg-
istered forward hooks, torchdistill provides a generalized customizable loss module
that allows users to easily combine different loss modules with balancing factors by
configuration files such as those in Fig. 2b. Given a pair of input x and ground-truth

35

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation 9

y, the I/O dictionaries consist of a set of keys J and the values zS
j and zT

j (j ∈ J) ex-
tracted from student and teacher models respectively. Using the I/O dictionaries and the
ground-truth, the generalized loss is defined as

L =
∑

j∈J
λj · Lj(z

S
j , z

T
j , y), (1)

where λj is a balancing weight (hyperparameter) for Lj , which is either a loss module
implemented in PyTorch [29] or user’s defined loss module in registry.

For instance, the loss function to train student model on ILSVRC 2015 dataset [36]
at the 2nd stage of factor transfer (Fig. 2b) can be defined as:

L = λcls · Lcls(z
S
cls, z

T
cls, y) + λFT · LFT(zS

FT, z
T
FT, y) (2)

Lcls(z
S
cls, z

T
cls, y) = CrossEntropyLoss(zS

cls, y)

LFT(zS
FT, z

T
FT, y) =

∥∥∥∥∥
zS

FT∥∥zS
FT

∥∥
2

− zT
FT∥∥zT

FT

∥∥
2

∥∥∥∥∥
p

,

where λcls = 1, λFT = 1, 000 and p = 1, following [15].

2.7 Stage-wise Training

In the previous sections, we describe the main features of torchdistill, and what mod-
ules are configurable in the framework. We emphasize that all the training configura-
tions described above can be defined stage-wisely.

Seamless multi-stage training configurations: Specifically, the framework is designed
to enable users to configure critical components such as 1) number of epochs, 2) train-
ing and validation datasets, 3) teacher and student models, 4) modules (layers) to be
trained/frozen, 5) optimizer, 6) learning rate scheduler, 7) loss module. These com-
ponents can be re-defined at each of training stages, otherwise the framework reuses
those from the previous stage. Notice that these training configurations can be declared
in a configuration file, and this design enables to support not only two-stage training
strategies [35,49,15,11], but also more complicated distillation methods such as teacher
assistant knowledge distillation (TAKD) [25], that trains TAs to fill the gap between
student and teacher models. Transfer learning also can be supported by changing mod-
els and datasets from stage to stage, and users would execute code with a configuration
file only once. Therefore, they will not need to execute code multiple times to perform
multi-stage training, including transfer learning.

Redesigning models for efficient training: Furthermore, our framework gives users an
option to redesign teacher and student models at each stage by specifying the required
modules in a configuration file. Specifically, users are allowed to rebuild models by
reusing modules in the models optionally with auxiliary modules. Figure 1 shows an
example that modules after the 8th and the 5th blocks of the teacher and student models

36

10 Y. Matsubara

C
on

v.
, B

at
ch

 N
or

m
.,

R
eL

U
, M

ax
 P

oo
l.

C
on

v,
 B

at
ch

 N
or

m
.,

R
eL

U
,

M
ax

 P
oo

l.

Redesigned (Minimal) Teacher Model

Redesigned (Minimal) Student Model

C
on

v.

LossRegressor

Fig. 3: Hint-training with teacher and student models pruned simply by specifying re-
quired modules in a configuration file for further efficient training, compared to a naive
configuration in Fig. 1.

respectively can be pruned as the outputs of the modules are not used in the hint-training
(1st stage), thus not required to be executed. In this specific case, the redesigned student
model will consist of the trainable (blue) modules and a regressor (auxiliary module)
as illustrated in Fig. 3, and the teacher and student architectures at the 2nd stage will
be reverted to the original ones (Fig. 1a) with parameters learnt at the 1st stage. Also,
the redesigned teacher/student model can be an empty module to save execution time.
In Fig. 2a, for instance, there is no need to feed input batch to the student model (thus,
can be empty) as at the 1st stage of factor transfer, only the teacher model is executed
to train the paraphraser.

As introduced in Section 2.4, when the teacher’s outputs are cacheable (e.g., in terms
of available disk space), teacher’s inference can be skipped by loading the cache files
produced at previous epoch. Redesigning models help users shorten training sessions
even when teacher’s outputs are not cacheable. Note that student model’s outputs, how-
ever, cannot be cached as the model’s parameters are updated every iteration. Table 3
suggests that redesigning models using only modules to be executed for training would
be an effective approach to saving training time, and this improvement would be more
critical for training models on large datasets and/or with a lot of epochs. We emphasize
that users can redesign (minimize) the models by specifying the required modules in a
configuration file rather than hardcode (reimplement) the pruned models.

3 Reference Methods

Here, we describe the reimplementations of knowledge distillation methods and exper-
iments to reproduce the reported results on ImageNet and COCO datasets.

37

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation 11

Table 3: Epoch-level training speed improvement by redesigning teacher and student
(ResNet-18) models with required modules only for hint-training shown in Figure 3.

Teacher ResNet-34 ResNet-50 ResNet-101 ResNet-152
Original 934 sec 1,175 sec 1,468 sec 1,779 sec
Minimal 786 sec 929 sec 936 sec 1,022 sec

3.1 Reimplementations

Given that the pretrained models in torchvision are trained on large benchmark datasets,
ImageNet (ILSVRC 2012) [36], and COCO 2017 [21], we focus our implementations
on these datasets as the pretrained models can be used as teacher models and/or baseline
student models (naively trained on human-annotated datasets). Note that some of the
methods are not validated on these datasets in their original work.

Table 4 shows a brief summary of reference distillation methods reimplemented
with torchdistill, and indicates what additional modules were implemented and added
to the registry for reimplementing the methods. We emphasize that methods without any
check marks (X) in the Required additional modules columns such as KD, AT, PKT,
RKD, HND, SPKD, Tf-KD, GHND and L2 can be reimplemented simply by adding
the new loss modules to the registry in the framework (Section 2.2).

Different from the existing frameworks [51,28,11,27,41,48], all the methods in Ta-
ble 4 are reimplemented independently from models in torchvision so that users can
easily switch models by specifying a model name and its parameters in a configuration
file. Taking image classification as an example, the shapes of inputs and (intermediate)
outputs for the models are often fixed (e.g., 3 × 224 × 224 and 1,000 respectively, for
models trained on ImageNet dataset), that makes it easy to match the shape of student’s
output with that of teacher when computing loss values to be minimized.

3.2 Reproducing ImageNet experiments

In this section, we attempt to reproduce some experimental results with their proposed
distillation methods. In particular, we choose the attention transfer (AT), factor transfer
(FT) [15], contrastive representation distillation (CRD) [41], teacher-free knowledge
distillation (Tf-KD) [50], self-supervised knowledge distillation (SSKD) [48], L2 and
prime-aware adaptive distillation (PAD-L2) methods [52] for the following reasons:

– these methods are validated with the ImageNet datasets for ResNets-34 and -18 as
teacher and student models in their original work, 6

– the hyperparameters used in the ImageNet experiments are described in the original
studies and/or their published source code, and

– we did not have time to tune hyperparameters for other methods that are not vali-
dated on the ImageNet dataset in their original papers.

6 The teacher model for Tf-KD is the pretrained ResNet-18 [50].

38

12 Y. Matsubara

Table 4: Reference knowledge distillation methods implemented in torchdistill.

Methods Multi-stage Required additional modules
training Auxiliary Special Custom dataset

KD [12]
FitNet [35] X X
FSP [49] X X
AT [51]

PKT [28]
FT [15] X X X

DAB [11] X X X
RKD [27]
VID [1] X X

CCKD [30] X X
HND [23]
SPKD [43]
CRD [41] X X X

Tf-KD [50]
GHND [24]
SSKD [48] X X X X
L2 [52]

PAD-L2 [52] X X X

In addition to the methods, we apply knowledge distillation (KD) [12] to the same
teacher-student pair. Note that except KD 7, we reuse the hyperparameters (e.g., number
of epochs) for ImageNet given in their original work to reproduce their experimental
results, and we provide the configuration and log files, and trained model weights.4

We also should note that Zagoruyko and Komodakis [51] propose attention transfer
(AT), and define the following total loss function for their ImageNet experiment:

LAT = L(WS , x) +
β

2

∑

j∈I

∥∥∥∥∥∥
Qj

S∥∥∥Qj
S

∥∥∥
2

− Qj
T∥∥∥Qj
T

∥∥∥
2

∥∥∥∥∥∥
p

, (3)

where L(WS , x) is a standard cross entropy loss, andQj
S andQj

T denote the vectorized
forms of the j-th pair of student and teacher attention maps, respectively (Refer to their
work [51] for more details). In their published framework8, they set β and p to 1,000
and 2 respectively. However, we find a discrepancy between their defined loss function
(Eq. (3)) and their implemented loss function (Eq. (4)), that computes mean squared
error (MSE) between the teacher and student attention maps.

7 For KD, we set hyperparameters as follows: temperature T = 1 and relative weight α = 0.5.
8 https://github.com/szagoruyko/attention-transfer

39

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation 13

Table 5: Validation accuracy of ResNet-18 (student) trained on ILSVRC 2012 dataset
with ResNet-34 (teacher), using eight different distillation methods. With the hyperpa-
rameters (e.g., # Epochs) described in the original work or given by the authors, all the
reimplemented methods outperformed the student model trained without teacher.

Accuracy[%] # Epochs Training time
Top-1 Diff.

Teacher: ResNet-34 73.31 +3.56 N/A N/A
Student: ResNet-18 69.75 0.00 N/A N/A

KD 71.23 +1.48 100 60hr 04min
KD † 71.37 +1.62 100 23hr 07min
AT 70.90 +1.15 100 59hr 07min

AT † 70.55 +0.80 100 23hr 11min
FT 70.43 +0.68 91 56hr 40min

FT † 70.45 +0.70 91 22hr 14min
CRD 70.81 +1.06 100 356hr 31min

CRD ‡ 70.93 +1.18 100 179hr 12min
Tf-KD 70.52 +0.77 90 18hr 50min

Tf-KD † 70.21 +0.46 90 46hr 34min
SSKD ‡ 70.09 +0.34 130 113hr 12min
L2 ‡ 71.08 +1.33 90 21hr 25min

PAD-L2 ‡ 71.71 +1.96 (90 +) 30 28hr 34min

† Distributed training with linear scaling rule [7]: Learning rates are modified according to the
number of distributed training processes. (i.e. multiplied by the number of GPUs = 3 in this work).
‡ Distributed training with total batch size used in original work.

LAT = L(WS , x) +
β

2

∑

j∈I
MSE

(Qj
S∥∥∥Qj
S

∥∥∥
2

,
Qj

T∥∥∥Qj
T

∥∥∥
2

)
(4)

In our preliminary experiment with hyperparameters the authors provide, the stu-
dent model did not train well with the loss module based on Eq. (3). For this reason, we
used Eq. (4) instead for AT in our experiments.

Table 5 summarizes the results of the experiments with the training configurations
(e.g., teacher-student pair, hyperparameters) described in each of the original studies
and/or verified by the authors. In addition to experiments with a single GPU, we perform
experiments with a distributed training strategy supported by PyTorch (reported with a
dagger mark †) to demonstrate that our framework supports the strategy for saving
training time. As for the L2 and PAD-L2 methods, the original study [52] uses batch
size of 512 for their ImageNet experiments, which did not fit in our single GPU. Thus,
we split the batch size into 171 per GPU, and report only the results with the distributed
training (marked with ‡). The same strategy is applied to SSKD (total batch size of
256 and 768 for normal and augmented samples, respectively [48]) as it takes at least

40

14 Y. Matsubara

4 times as long at epoch-level to train a model, compared to the other methods due to
their 4x augmented training data, and our batch size per GPU is 85 (for normal samples
+ 255 for augmented samples). Similarly, we apply the same strategy for CRD due to
the limited time. We also note that Zhang et al. [52] applied their proposed PAD-L2 to
the student model trained with their proposed L2 as a pretrained model, and train the
student model with the PAD-L2 method for 30 more epochs (i.e., 120 epochs).9

Based on the methods we reimplemented with torchdistill, we successfully repro-
duce the results on the ILSVRC 2012 dataset for the teacher-student pair reported in the
original papers of AT [51], Tf-KD [50], L2 and PAD-L2 [52] methods, and the result
of PAD-L2 was recently reported as the state-of-the-art performance for the teacher-
student pair on the ILSVRC 2012 dataset [52]. All the results outperform the baseline
performance (S: ResNet-18) which is trained with human-labels only, and the pretrained
model is provided by torchvision. Note that FT was validated on ILSVRC 2015 dataset
in their original work [15], and we confirm the FT’s improvement over a baseline using
ILSVRC 2012 dataset as the teacher model (ResNet-34) in torchvision is pretrained on
the dataset. The result with the reimplemented CRD is almost comparable to the accu-
racy reported in the original study [41]. In CRD, both positive and negative samples are
leveraged for learning representations, thus turns out to be the most-time consuming
method in Table 5. The reimplemented SSKD outperforms the baseline model although
the accuracy does not match the reported result [48]. A potential factor may be a dif-
ferent training configuration forced by our limited computing resource (e.g., different
batch size per GPU whereas 8 parallel GPUs were used in their work) since we sim-
ply refactored and made the authors’ published code compatible with the ILSVRC 2012
dataset. As pointed out by Tian et al. [41], KD [12] is still a powerful method. Our reim-
plmented KD outperformed their proposed state-of-the-art method, CRD (71.17%), and
achieved the comparable accuracy with their CRD+KD (71.38%) method.

3.3 Reproducing COCO experiments

To demonstrate that our framework can 1) be applied to different tasks, and 2) col-
laborate with model architectures that are not implemented in torchvision, we apply the
generalized head network distillation (GHND) to bottleneck-injected R-CNN object de-
tectors for split computing [24], using COCO 2017 dataset. Their proposed bottleneck-
injected Faster and Mask R-CNNs with ResNet-50 and FPN are designed to be parti-
tioned into head and tail models which will be deployed on mobile and edge comput-
ers respectively, for reducing inference speed in resource-constrained edge computing
systems. Following the original work on GHND, we apply the method to a pair of the
original and bottleneck-injected Faster R-CNNs as teacher and student respectively, and
conduct the same experiment for Mask R-CNN as well. As shown in Table 6, the repro-
duced mean average precision (mAP) match those reported in the original study [24].

9 The configuration is not described in [52], but verified by the authors.

41

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation 15

Table 6: Validation mAP of bottleneck-injected R-CNN models for split computing
(student) trained on COCO 2017 dataset by GHND with original Faster/Mask R-CNN
models (teacher). Reproduced results match those reported in the original work [24].

Backbone: ResNet-50 and FPN mAP # Epochs Training time
BBox Mask

Faster R-CNN w/ Bottleneck 0.359 N/A 20 24hr 13min
Mask R-CNN w/ Bottleneck 0.369 0.336 20 24hr 21min

4 Conclusions

In this work, we presented torchdistill, an open-source framework dedicated for knowl-
edge distillation studies, that supports efficient training and configurations systems
designed to give users a summary of the experiments. Researchers can build on the
framework (e.g., by forking the repository) to conduct their knowledge distillation stud-
ies, and their studies can be integrated to the framework by sending a pull request.
This will help the research community ensure the reproducibility of the work, and ad-
vance the deep learning research while supporting fair method comparison on bench-
marks. Specifically, researchers can publish the log, configuration, and pretrained model
weights for their champion performance, that will help them ensure the champion per-
formance for specific datasets and teacher-student pairs.

Furthermore, the configuration files for and log files produced by torchdistill will
help researchers complete the ML Code Completeness Checklist,5 and we provide the
full configurations (hyperparameters), log files and checkpoints including model weights
for experimental results shown in Tables 5 and 6 in our code repository.1 We provide ref-
erence code and configurations for image classification and object detection tasks, and
plan to extend our framework for different tasks using popular packages e.g., Trans-
formers [47] for NLP tasks. Our framework will be maintained and updated along with
the new releases of PyTorch and torchvision so that users can save time for coding and
use it as a standard framework for reproducible knowledge distillation studies.

Acknowledgments

We thank the anonymous reviewers for their comments and the authors of related studies
for publishing their code and answering our inquiries about their experimental configu-
rations. We also thank Sameer Singh for feedback about naming the framework.

References

1. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distil-
lation for knowledge transfer. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 9163–9171 (2019)

42

16 Y. Matsubara

2. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural Information
Processing Systems. pp. 2654–2662 (2014)

3. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
pp. 535–541 (2006)

4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end ob-
ject detection with transformers. In: The European Conference on Computer Vision (ECCV)
(2020)

5. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Transactions
on Pattern Analysis and Machine Intelligence 28(4), 594–611 (2006)

6. Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N.F., Peters, M., Schmitz,
M., Zettlemoyer, L.: AllenNLP: A deep semantic natural language processing platform. ACL
2018 p. 1 (2018)

7. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A.,
Jia, Y., He, K.: Accurate, large minibatch SGD: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677 (2017)

8. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In: Fourth International Conference on
Learning Representations (2016)

9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 2961–2969 (2017)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778
(2016)

11. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation bound-
aries formed by hidden neurons. In: Proceedings of the AAAI Conference on Artificial In-
telligence. vol. 33, pp. 3779–3787 (2019)

12. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: Deep
Learning and Representation Learning Workshop: NIPS 2014 (2014)

13. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang,
R., Vasudevan, V., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 1314–1324 (2019)

14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 4700–4708 (2017)

15. Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: Network compression via factor
transfer. In: Advances in Neural Information Processing Systems. pp. 2760–2769 (2018)

16. Kolesnikov, S.: Accelerated DL R&D. https://github.com/catalyst-team/catalyst (2018), ac-
cessed: Sep 28, 2020

17. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained cate-
gorization. In: Proceedings of the IEEE International Conference on Computer Vision Work-
shops. pp. 554–561 (2013)

18. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems. pp. 1097–1105
(2012)

20. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets.
In: Fourth International Conference on Learning Representations (2016)

21. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,
C.L.: Microsoft COCO: Common objects in context. In: European Conference on Computer
Vision. pp. 740–755. Springer (2014)

43

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation 17

22. Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., van der
Maaten, L.: Exploring the limits of weakly supervised pretraining. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 181–196 (2018)

23. Matsubara, Y., Baidya, S., Callegaro, D., Levorato, M., Singh, S.: Distilled split deep neural
networks for edge-assisted real-time systems. In: Proceedings of the 2019 Workshop on Hot
Topics in Video Analytics and Intelligent Edges. pp. 21–26 (2019)

24. Matsubara, Y., Levorato, M.: Neural Compression and Filtering for Edge-assisted Real-time
Object Detection in Challenged Networks. arXiv preprint arXiv:2007.15818 (2020)

25. Mirzadeh, S.I., Farajtabar, M., Li, A., Ghasemzadeh, H.: Improved knowledge distillation
via teacher assistant. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp.
5191–5198 (2020)

26. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured
feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4004–4012 (2016)

27. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 3967–3976 (2019)

28. Passalis, N., Tefas, A.: Learning deep representations with probabilistic knowledge transfer.
In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 268–284
(2018)

29. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al.: PyTorch: An imperative style, high-performance deep
learning library. In: Advances in Neural Information Processing Systems. pp. 8024–8035
(2019)

30. Peng, B., Jin, X., Liu, J., Li, D., Wu, Y., Liu, Y., Zhou, S., Zhang, Z.: Correlation congru-
ence for knowledge distillation. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 5007–5016 (2019)

31. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 413–420. IEEE (2009)

32. Redmon, J., Farhadi, A.: YOLO9000: Better, faster, stronger. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 7263–7271 (2017)

33. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

34. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection
with region proposal networks. In: Advances in Neural Information Processing Systems. pp.
91–99 (2015)

35. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: Hints for
thin deep nets. In: Third International Conference on Learning Representations (2015)

36. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recognition challenge. Interna-
tional Journal of Computer Vision 115(3), 211–252 (2015)

37. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted resid-
uals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 4510–4520 (2018)

38. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. The 5th Workshop on Energy Efficient Machine Learning and
Cognitive Computing (2019)

39. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: Mnasnet:
Platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 2820–2828 (2019)

40. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural networks.
In: International Conference on Machine Learning. pp. 6105–6114 (2019)

44

18 Y. Matsubara

41. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: Eighth Interna-
tional Conference on Learning Representations (2020)

42. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy.
In: Advances in Neural Information Processing Systems. pp. 8250–8260 (2019)

43. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 1365–1374 (2019)

44. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-
2011 Dataset (2011)

45. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature
imitation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 4933–4942 (2019)

46. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched back-
ground similarity. In: CVPR 2011. pp. 529–534. IEEE (2011)

47. Wolf, T., Chaumond, J., Debut, L., Sanh, V., Delangue, C., Moi, A., Cistac, P., Funtowicz, M.,
Davison, J., Shleifer, S., et al.: Transformers: State-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. pp. 38–45 (2020)

48. Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision. In: The
European Conference on Computer Vision (ECCV) (2020)

49. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast optimization,
network minimization and transfer learning. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 4133–4141 (2017)

50. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation via label
smoothing regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 3903–3911 (2020)

51. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. In: Fifth International Confer-
ence on Learning Representations (2017)

52. Zhang, Y., Lan, Z., Dai, Y., Zeng, F., Bai, Y., Chang, J., Wei, Y.: Prime-aware adaptive dis-
tillation. In: The European Conference on Computer Vision (ECCV) (2020)

53. Zmora, N., Jacob, G., Zlotnik, L., Elharar, B., Novik, G.: Neural Network Distiller: A Python
Package for DNN Compression Research. arXiv preprint arXiv:1910.12232 (2019)

A Hard-coded Module and Forward Hook Configurations

For lowering barriers to high-quality knowledge distillation studies, it would be im-
portant to enable users to collaborate with models implemented in popular libraries
such as torchvision. However, all the models in the existing frameworks described in
this study are reimplemented to extract intermediate representations in addition to the
models’ final outputs. Figure 4 shows an example of original and hard-coded (reim-
plemented) forward functions in ResNet model for knowledge distillation experiments.
As illustrated in the hard-coded example, the authors [41,48] unpacked an existing im-
plementation of ResNet model and re-designed interfaces of some modules to extract
additional representations (i.e., “f0”, “f1 pre”, “f2”, “f2 pre”, “f3”, “f3 pre”, and “f4”).

Furthermore, the modified interfaces also require those in the downstream processes
to be modified accordingly, that will need extra coding cost. We emphasize that users
are required to repeat this procedure every time they introduce new models for experi-
ments, and the same issues will be found when introducing new schemes implemented

45

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation 19

def forward impl(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)

return x

def forward(self, x):
return self. forward impl(x)

def forward(self, x, is feat=False, preact=False):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
f0 = x

x, f1 pre = self.layer1(x)
f1 = x
x, f2 pre = self.layer2(x)
f2 = x
x, f3 pre = self.layer3(x)
f3 = x

x = self.avgpool(x)
x = x.view(x.size(0), −1)
f4 = x
x = self.fc(x)

if is feat:
if preact:

return [f0, f1 pre, f2 pre, f3 pre, f4], x
else:

return [f0, f1, f2, f3, f4], x
else:

return x

Fig. 4: Forward functions in original (left) and hard-coded (right) implementations of
ResNet. The original and hard-coded implementation are from torchvision and [41,48],
respectively. Only “x” from “self.fc” is used for vanilla training and prediction. Note
that some layers are skipped in the hard-coded example as it is reimplemented for CI-
FAR datasets. Its interfaces of “layer1”, “layer2”, and “layer3” are different from the
original ones and designed to extract their intermediate representations such as “f1 pre”.

as other types of module (e.g., dataset and sampler) required by specific methods such
as CRD [41] and SSKD [48]. Using a forward hook manager in our framework, we can
extract intermediate representations from the original models (e.g., Fig. 4 (left)) with-
out reimplementation like Fig. 4 (right), and help users introduce such schemes with
wrappers of the module types so that they can apply the schemes simply by specifying
in a configuration file used to design an experiment.

The following example illustrates how to specify the input to or output from mod-
ules we would like to extract from ResNet-18 model whose forward function is shown
in Fig. 4 (left). “f0”, “f1 pre”, “f2 pre”, and “f3 pre” in Fig. 4 (right) correspond to
the output from the first ReLU module “relu”, and pre-activation representations in
“layer1”, “layer2”, and “layer3” modules, which are the inputs to their last ReLU mod-
ules (i.e., “layer1.1.relu”, “layer2.1.relu”, and “layer3.1.relu”). “f4” is the flatten output
from average pooling module “avgpool”. Similarly, we can define a forward hook man-
ager for teacher model, and reuse the module paths such as “layer1.1.relu” to define
loss functions in the configuration file.
. . .
s t u d e n t :

. . .
f o r w a r d h o o k :

i n p u t : [’ l a y e r 1 . 1 . r e l u ’ , ’ l a y e r 2 . 1 . r e l u ’ , ’ l a y e r 3 . 1 . r e l u ’ , ’ f c ’]
o u t p u t : [’ r e l u ’]

. . .

46

Spatio-Temporal Convolutional Autoencoders
for Perimeter Intrusion Detection

Devashish Lohani1,2, Carlos Crispim-Junior1, Quentin Barthélemy2,
Sarah Bertrand2, Lionel Robinault1,2, and Laure Tougne1

1 Univ Lyon, Lyon 2, LIRIS, F-69676 Lyon, France
{devashish.lohani, carlos.crispim-junior, laure.tougne}@liris.cnrs.fr

2 FOXSTREAM, Vaulx-En-Velin, France
{d.lohani, q.barthelemy, s.bertrand, l.robinault}@foxstream.fr

Abstract. In the video surveillance context, a perimeter intrusion de-
tection system (PIDS) aims to detect the presence of an intrusion in
a secured perimeter. Existing camera based approaches relies on hand
crafted rules, image based classification and supervised learning. In a
real world intrusion detection system, we need to learn spatio-temporal
features unsupervisely (as annotated data are very difficult to obtain)
and use these features to detect intrusions. To tackle this problem, we
propose to use a 3D convolutional autoencoder. It is inspired from the
DeepFall paper where they use it for an unsupervised fall detection task.
In this paper, we reproduce their results on the fall detection task and
further extend this model to detect intrusions in a perimeter intrusion
dataset. We also introduce a new evaluation scheme which helps to draw
essential insights from the results. Our results1 show that we correctly
reproduce the results of fall detection task and furthermore our model
shows competitive performance in perimeter intrusion detection task. To
our knowledge, it is the first time when a PIDS is made in a fully unsu-
pervised manner while jointly learning the spatio-temporal features from
a video-stream.

Keywords: Perimeter intrusion detection · Spatio-temporal data · 3D
convolutions · Convolutional autoencoder · Unsupervised learning.

1 Introduction

High security installations may contain a large boundary with the need to be pro-
tected from unwanted elements entering in the boundary. A perimeter intrusion
detection system (PIDS) is used to serve this purpose and it aims at detecting
the presence of an intrusion in a secured perimeter. An intrusion can be defined
as a moving object belonging to a category of items like human, car, truck, mo-
torcycle, etc., which is defined as unauthorized for a particular perimeter or area
at a given time. The same object might not be categorized as an intruder if it is
outside the perimeter or if it is being allowed at a different time, e.g. moving cars
1 The source code is available at https://gitlab.liris.cnrs.fr/dlohani/stcae_pids.

47

2 Lohani et al.

or people that are outside the boundary are not intruders. Similarly, intrusion
objects like people/cars might be allowed to move in an area around daytime
for example but unauthorized for the rest of the day, hence the importance of
temporality. Stationary objects, even if belonging to an unauthorized category
should not be classified as an intrusion, e.g. cars parked inside the perimeter
must not be detected as an intrusion while a moving car entering or leaving the
perimeter must be classified as an intrusion. So, we can understand how difficult
is to detect intrusion as it is a rare event which is both time and space dependent
and further the definition of an intrusion varies according to the installation to
protect and cannot be generalized.

There exists PIDS with various highly sensitive sensors like microwave sen-
sors, electric field sensors, active infrared sensors, etc., to detect changes at dif-
ferent wavelengths to detect intrusions [8]. However, these PIDS produce a large
number of false alarms and cannot differentiate between intrusion and other
objects and thus requires a lot of human resources [7].

In order to overcome the disadvantages of these sensor based PIDS, many
camera based PIDS have been proposed [15,17,21,11]. A set of cameras are as-
signed with user-defined field-of-view of the area to be surveyed and activity is
monitored by intrusion detection algorithms. These algorithms detect the move-
ments of an intruder attempting to breach a security wall or region and alert
security. The key problem with video analytics based solution is false alarm [15]
which is due to inherent complications of understanding of the object detected
in the video especially if the object is far from the camera. The object may ap-
pear very small in the image that makes recognition of the object more difficult.
Existing PIDS algorithms detect intrusion in a supervised manner by annotating
small set of intrusion classes [17,21], using hand crafted features [16,17], treating
video stream as an image based data (loosing the spatio-temporal features) and
thus employing image based object classification [21,11]. Thus, existing models
do not learn the real nature of video, which is a spatio-temporal data. They
rely on handcrafted features and treat intrusion detection as a supervised learn-
ing problem which is not generalizable in reality as intrusions occur rarely and
therefore we cannot have a large annotated database. Furthermore, we cannot
train on few object classes as intrusion classes can practically be very high in
number.

To learn the spatio-temporal data unsupervisely from a video stream and
then detect intrusion, we propose to use a 3D convolutional autoencoder model.
The model is inspired from the work of Nogas et al. [14] where they use it for
an unsupervised fall detection problem [20]. In this paper, we reproduce their
results and further extend their model to do perimeter intrusion detection in a
challenging dataset. Our model detects intrusions such as moving car, people,
motorcycle, truck, etc, in a secure perimeter, after training in a fully unsupervised
setting.

This paper is organized as follows. Section 2 presents some related works
found in recent literature about camera based PIDS. Section 3 introduces the
3D convolutional autoencoder with different architectures that we tested. It also

48

Spatio-Temporal ConvAE for PID 3

details the training and evaluation. Section 4 presents the datasets used for both
tasks. Section 5 presents the results and discussion. It provides the reproduced
results for fall detection task with a new evaluation scheme which provides some
key insights. This section also shows competitive results on the intrusion detec-
tion task. Finally, Section 6 reports the general conclusions drawn, and suggests
future research directions.

2 Related Work

Intelligent video surveillance is a well-established commercial technology that
allows the users to monitor and secure areas with the security cameras. It uses
mathematical algorithms to detect moving objects in an image and filter non-
relevant movements. A Gaussian mixture model for RGB background modeling
is proposed in [16], allowing to detect moving objects using background sub-
traction. A surveillance system is introduced in [17], using closed-circuit tele-
vision (CCTV) to detect and classify vehicles. They applied real-time vehicle
detection and classification algorithms. Object detection is performed with a
background subtraction method where the background is modeled by using a
Gaussian mixture model. In order to classify the detected vehicles, a method
combining histogram of oriented gradients and artificial neural networks (ANN)
was used. However, both these works extract features using hand-crafted meth-
ods and more importantly they tackle object detection/classification/tracking
in open areas where there is no concept of a perimeter and thus no intrusion
detection.

An on-line intrusion event detection system is proposed in [21], using a model
for training an event detection system based on object tracking. They modeled
the training as a multiple instance learning problem, which allowed to train the
classifier from annotated events despite temporal ambiguities. But their model
uses many handcrafted features and further they try to model intrusion detection
with supervised learning, while in reality it is an unsupervised learning problem
due to the lack of annotated data as intrusions occur rarely.

Recently, an intelligent intrusion detection system with detection, classifi-
cation, tracking, and action recognition of an intruder is introduced [11]. They
proposed an integrated acquisition device combining optical and thermal cam-
eras, a virtual fence to set the boundary between surveillance and external areas
in a graphical user interface, a background model designed to detect moving
objects and a convolutional neural network (CNN) to classify moving objects as
either intruders or wild animals. Their model also relies on the fact that we have
annotated data.

All the above models learn spatial and temporal features of a video stream
independent of each other. They treat video frames as still images and learn spa-
tial features, then they treat the temporal succession of spatial features. Overall,
none of the existing PIDS learns spatio-temporal features from a video jointly
and furthermore, they try to solve perimeter intrusion detection with a super-
vised learning approach.

49

4 Lohani et al.

Our work draws inspiration from the DeepFall paper [14]. This work is fo-
cused on detecting human falls from a video stream in an unsupervised manner
(without any annotated data). They formulate the fall detection problem as an
anomaly detection problem. They present a novel use of deep spatio-temporal
convolutional autoencoders to learn spatial and temporal features from normal
activities during training, i.e., they first learn “what is normal”. Then during
testing, they detect the events which have a high reconstruction error, that is to
say the falls. They also present a new anomaly scoring method that combines
the reconstruction scores of frames across video sequences to detect falls. Fur-
thermore, they show superior results in comparison to traditional autoencoder
and convolutional autoencoder methods to identify falls.

In this work, we reproduce the results of the DeepFall paper [14] and draw
key insights from them. We further tackle the problem of intrusion detection as
an anomaly detection problem. We also train a spatio-temporal autoencoder to
understand what is not an intrusion and detect intrusion in testing videos as
they mark an increase in reconstruction error of the frames.

3 3D Convolutional Autoencoders

While 2D-CNN learns appropriate representations for image classification, de-
tection and segmentation tasks [12], they are incapable of capturing the tempo-
ral information encoded in consecutive frames for video analysis problems [24].
One widely used solution to this is to add convolutional long short-term memory
(ConvLSTM) [18] layers on top of 2D-CNN layers [3]. However, these approaches
make the implicit hypothesis that spatial and temporal dimensions are indepen-
dent and can be processed sequentially, missing the existing correlations between
these dimensions.

A 3D kernel can be used to extract both spatial and temporal features from a
video by convolving it with the volume formed by stacking temporally contiguous
frames of the video [1]. This 3D convolution operation captures spatio-temporal
information encoded in the video as information from these contiguous frames is
cohesively used to form feature maps [10]. 3D-CNN are more suitable for spatio-
temporal feature learning than 2D-CNN [19], and are also used in the form of
an autoencoder [24,22]. Such a 3D autoencoder learns representations that are
locally invariant to spatio-temporal deformations of the video encoded by the 3D
convolutional feature maps, and is sometimes referred to as deep spatio-temporal
convolutional autoencoder (DSTCAE) [14].

The idea is to learn the regular/normal visual information from video se-
quences. The intuition is that the trained autoencoder is able to reconstruct
the motion features presented in regular videos with low error but unable to
accurately reconstruct motions in irregular videos. In other words, the autoen-
coder can model the complex distribution of the regular dynamics of appearance
changes.

50

Spatio-Temporal ConvAE for PID 5

Fig. 1: Network architecture of DSTCAE-Deconvolution. The encoder is com-
posed of layers with 3D convolution (red) followed by 3D max-pooling (yellow)
and decoder is composed of 3D deconvolution (blue) layers. Each layer has di-
mensions: time window length × height × width × number of feature maps.

3.1 Input Window Construction

A 3D convolutional autoencoder takes a volume formed by stacking temporally
contiguous frames of the video as input and reconstructs it. We refer to these
volumes as windows and generate them by applying a temporal sliding window
to video frames.

For a video with V frames, window length T , no padding and stride B (in
temporal axis), the number of windows (D) generated [14] is given by:

D =

⌊
V − T
B

⌋
+ 1 . (1)

These windows are fed into the network as follows. For an input video, we select
first T frames and feed this window to the network. Then we shift by B frames
temporally and select next T frames and so on until we cover all the V video
frames.

3.2 Architecture Design

We evaluate three variants of the model. In Fig. 1, we illustrate the overall
network outline with deconvolution model. Input video is fed as windows to
the network where it is encoded by 3D convolution [10] and 3D max-pooling,
and decoded with a deconvolution operation [5] to obtain the reconstructed
window. Encoding and decoding for the three models are illustrated in Fig. 2
and described in details below.

Encoder: We set the window length T = 8, stride B = 1 in Eq. (1), resize input
video frames to 64×64 and use grayscale image with 1 channel, thus the shape
of input hyper-cuboid is 8×64×64×1. This input is encoded with a series of 3D
convolution and 3D max-pooling layers. 3D convolutions operate with kernel of
5×3×3, 1×1×1 stride and same padding. The max-pooling layers use padding,

51

6 Lohani et al.

Fig. 2: Encoding and decoding configurations of DSTCAE-UpSampling,
DSTCAE-Deconvolution and DSTCAE-C3D networks.

with stride and kernel dimensions of 2×2×2. This means that each dimension
(time window length, height and width) is reduced by a factor of 2 with every
max-pooling layer. Fig. 2 shows specifications of encoding and decoding for the
three models.

Decoder: We can decode either via upsampling or deconvolution. The upsam-
pling method (DSTCAE-UpSampling) uses an upsampling operation followed
by a 3D convolution with same parameters as in encoding. The upsampling op-
eration is UpSampling3D as defined in Keras [9]. We use upsampling factors of
2x2x2, meaning matrix elements are repeated across each dimension such that
the extent of all dimensions is doubled. This upsampled data is learned by a 3D
convolution operation. The DSTCAE-Deconvolution architecture uses 3D decon-
volutions [23], with stride 2×2×2, and same padding [24] instead of upsampling
plus convolution. This results in an increase in each dimension by a factor of 2,
thus undoing a max-pooling operation. In both methods, the final reconstructed
window is of exactly the same dimensions as that of the input window.
We use the ReLU activation function for all hidden layers and tanh activation
function at the output layer to limit the reconstructed pixel values in the range
[-1, 1], so that they are comparable to the input.

The DSTCAE-C3D network is inspired by the work of Tran et al. [19], having
the same encoding and decoding as DSTCAE-UpSampling, but with an extra
3D convolution + 3D max-pooling layer in encoding, and an extra 3D upsam-
pling + 3D convolution in decoding (Fig. 2). The extra 3D max-pooling and

52

Spatio-Temporal ConvAE for PID 7

3D upsampling has 1×2×2 kernel dimensions. This results in spatial dimension
reduction, but not temporal, allowing for greater network depth without collaps-
ing the temporal dimension. A dropout layer with dropout probability of 0.25 is
applied after second layer in all three models. Finally, the total training param-
eters for UpSampling, Deconvolution and C3D models are respectively 15,889 ,
15,889 and 21,665.

3.3 Training

All three variants of 3D convolutional autoencoder are trained2 only on videos
with normal behaviour, i.e. without any falls or intrusion. All the frames in the
videos are resized to 64 × 64, and pixels are rescaled by dividing values by 255
to keep them in the range [0, 1], and then subtracting the per-frame mean from
each frame, resulting in pixel values to be in the range [-1, 1].

The training loss of this network is the mean squared error, given by:

L(θ) =
1

N

N∑

i=1

‖flat(Ii)− flat(Oi(θ))‖22 , (2)

where Ii ∈ R64×64×T is the ith window of the input batch of size N , Oi ∈
R64×64×T is the corresponding reconstructed output window, θ denotes the net-
work parameters, flat(.) is the flattening operator, which flattens the input array
into a one dimensional vector and ‖ · ‖2 denotes the Euclidean norm.

The training batch size is set to N = 32 for all experiments, where each
element Ii of the batch consists of a stack of T = 8 frames. The training is
performed with Adadelta optimizer for 500 epochs. These parameters were cho-
sen to reproduce the exact results for the fall detection task and we found no
significant reduction in loss after further training.

3.4 Detection of Abnormal Events

Since we train our models only on videos without anomalous events by mini-
mizing the reconstruction error (RE), during testing phase the anomalous (falls
or intrusions) frames generally have a higher reconstruction error. We use this
reconstruction error for anomaly detection. Given a test video sequence, we ap-
ply a sliding window as described in Section 3.1. For the ith window Ii, the
network outputs a reconstruction of this window Oi. The reconstruction error
ri,j between the jth frame of Ii and Oi is calculated as:

ri,j = ‖flat(Ii,j)− flat(Oi,j)‖22 . (3)

Fig. 3 (a) shows the sliding windows and associated reconstruction errors of
frames. Since a single frame can be a part of upto T = 8 windows, therefore
it can have different reconstruction error scores corresponding to each window.
For example, the frame Fr3 has three reconstruction errors r1,3, r2,3 and r3,3, in
2 All experiments were done on NVIDIA GeForce GTX 1080, with 12GB of RAM.

53

8 Lohani et al.

Fig. 3: Illustration of errors: sliding windows on video with j frames (a), and
different reconstruction error scores per frame (b).

reference to first, second and third window respectively. Since we focus on frame
level evaluation, we need one single reconstruction error value for each frame.
We propose two ways to obtain the per-frame reconstruction error scores, which
are described below.

Reconstruction Error r: A simple way to obtain a per frame reconstruction
error is to get the reconstruction error of a frame from the first window it appears
in. Since we use a temporal sliding window with window length T and stride
B = 1, this means that a frame can appear on a maximum of T windows. The
reconstruction error r for video frames is obtained as follows. r scores for the
first T frames are obtained from the first window, then we slide our window
temporally by 1 frame (B = 1) and r for the (T + 1)th frame is obtained from
the second window and we similarly obtain r scores for next N frames from next
N windows.

In Fig. 3 (b), the reconstruction error r is marked with green color. We can
observe that for the first 8 frames, r is taken from first window, then from 9th

frame onwards, r is taken from last frame of each new window. For the jth frame
with m = max(1, j − T + 1), we obtain rj as:

rj = rm,j . (4)

54

Spatio-Temporal ConvAE for PID 9

Cross-Window Reconstruction Errors rµ and rσ: Another way to obtain
a per frame reconstruction error can be to evaluate the statistics of a frame from
the different temporal windows it appears in. Since each window that a frame
appears in provides a different temporal context within which this frame can be
viewed, we need to consider all the reconstruction errors obtained for a frame
across different windows [13].

For the jth frame of the ith window, an anomaly score can be computed
based on the mean rµj or standard deviation rσj of the reconstruction errors
across temporal contexts with window length T . With k = min(j, T), we obtain
rµj and rσj as follows3:

rµj = 1
k

∑j
i=j−k+1 ri,j

rσj =
√

1
k

∑j
i=j−k+1

(
ri,j − rµj

)2
.

(5)

In Fig. 3 (b), the cross-window RE score calculation is depicted with red rectan-
gle. Frame 3 appears in 1st, 2st and 3st window, therefore rµ3 and rσ3 are calculated
using Eq. (5) with r1,3, r2,3 and r3,3 respectively.

A high value of rµj or rσj means that the jth frame, when appearing at different
positions in different windows, is reconstructed with a high average error. For a
normal activity or non-intrusion case, the reconstruction error of a frame should
not vary a lot with its position in subsequent windows and if it does, then this
may indicate anomalous behaviour, such as a fall or an intrusion. Similarly, a
high value of rj for a frame may indicate anomalous behaviour.

3.5 Evaluation Metrics

To check whether these frame level reconstruction error scores are sufficiently
high to raise an alarm, we need to choose a threshold. But by choosing a fixed
threshold, our evaluation will be biased to this particular dataset and threshold
choice. Thus, to be independent from a fixed threshold, we vary the threshold
from lowest to highest value of the reconstruction error score and obtain an
receiver operating characteristic (ROC) curve [6] and the precision-recall (PR)
curve [4]. The area under the curve (AUC) is computed for the ROC and PR
curves, i.e. AUROC and AUPR respectively with fall or intrusion as the class
of interest and this is used as a performance indicator. Higher the value of
AUROC or AUPR, better is our model at classifying between anomalous frames
and normal activity frames. However, AUPR must be used in case of highly
imbalanced classes in the dataset [2,4], that is the case of anomaly detection
tasks where normal activity frames (i.e. true negatives) are over-represented in
the dataset.

For each test video, the RE scores (r, rµ or rσ) obtained for each frame are
used to calculate AUC of the ROC and PR curve. Following [14], a first metric
called “AUROC per video” is computed on each test video, and the average
3 In this paper, rµj and rσj correspond to Cjµ and Cjσ defined in [14].

55

10 Lohani et al.

Fig. 4: Some frames drawn from Fall dataset [20]: non-fall frames, like an empty
scene (a), a person entering (b), a person in the scene (c); and a fall frame (d).

and standard deviation across all test videos are reported. In this metric, the
succession of thresholds to separate classes and to estimate the ROC curve is
not common to all test videos. Since the succession of thresholds is adapted to
each test video, the ROC curve is in risk to be over-fitted, providing an overly
optimistic AUROC scores. Consequently, a second metric called “AUC all videos”
is computed on ROC and PR curves, but on the whole test set with a threshold
common to all test videos, which is the standard way to compute AUC [6]. Using
this metric, we obtain AUROC and AUPR scores and they actually measure the
generalization power of the detection models.

4 Datasets

Two datasets are used to train and test models: the first one for fall detection,
and the second one, which is a private dataset, for perimeter intrusion detection.

4.1 Fall Dataset

This dataset is used for the fall detection task. In this task, we have a video
camera which monitors the activity of a person in an area and the aim is to
detect and alert as soon as a person falls. The problem here is quite similar
to the intrusion detection as it is also an unsupervised task on a video stream
[14]. We evaluate the model for detecting falls on the Thermal Fall Detection
Activity Recognition dataset [20]. This dataset consists of videos captured by
a FLIR ONE thermal camera mounted on an Android phone in a room setting
with a single view with either 25 or 15 frames per second (FPS). The dataset
contains a total of 44 videos. The training set has 9 videos without any fall
event and the testing set contains 35 videos with fall events (828 fall frames
out of 36,391 frames). The resolution of the thermal images is 640× 480. Fig. 4
shows some raw frames of the thermal dataset. We pre-process the dataset using
Eq. (1) and obtain 22,053 windows to train the studied models.

56

Spatio-Temporal ConvAE for PID 11

Fig. 5: Some frames drawn from Perimeter Intrusion dataset without intrusion.

Fig. 6: Some frames drawn from Perimeter Intrusion dataset with intrusions, and
intruders like persons or vehicles are labeled in red boxes.

57

12 Lohani et al.

4.2 Perimeter Intrusion Dataset

This private dataset consists of videos taken from a single thermal camera
mounted at a fixed position with a single view in the outdoor uncontrolled set-
ting. The videos are taken at 25 FPS with 400 × 296 frame size resolution. These
videos are intended to monitor the movement of any intruder designated object
in the field of view of the camera. A total of 180 videos was collected with 80
videos for training containing only non-intrusion activities and 100 videos for
testing. Out of these 100 test videos, 70 test videos contain intrusion and non-
intrusion frames and 30 videos contain only non-intrusion frames. This 30% of
only non-intrusion videos for testing is important in order to verify if the model
is capable to distinguish between intrusion and non-intrusion activities. Each
training video is converted into windows using Eq. (1) and we had a total of
47,998 windows for training.

The complexity of the dataset can be seen in Fig. 5 and 6 with some sample
snapshots of the videos. Since video is taken outside, we have different daylight
timing of the day/night and different weather conditions. Very often the strong
wind wobbles the camera, or an electric wire in front of it and herbs nearby. The
camera covers an intersection of the road with a long deep view of one road.
Unlike the Fall dataset, here abnormality can be of any type like some person,
a bike, car, truck, other vehicle or even a group of them. As discussed in the
Introduction, an object belonging to an intruder class (like car, person, other
vehicles) is considered an intrusion only if it shows movement in the monitored
area, regardless of time of the day. They can come and go to any of the three
entry/exit points of roads. Sometimes human intruder appears or disappears
into the herbs seen on the right side of the video frames. Multiple intrusions are
often present at some given instant. This makes intrusion detection very difficult.
Furthermore, some cars are frequently parked and should not be detected as an
intrusion. Since the camera captures a long view of one road, objects appear very
small as they go far away and their detection becomes even more complicated.

5 Results and Discussion

We evaluate the models on two different tasks, namely fall detection [20] and
intrusion detection. With fall detection, we try to reproduce the results of the
paper [14]. All three variants of 3D convolutional autoencoder were trained and
tested on both tasks.

5.1 Reproducibility on the Fall Detection task

The results of all three models are presented in Table 1. The training time is
the total time taken in minutes to train a particular model with all the training
set. Similarly, testing time is the total time taken to test all the test set with
a particular model. In column “AUROC per video”, we evaluate AUROC score
for each test video separately and report average value with associated standard

58

Spatio-Temporal ConvAE for PID 13

Table 1: Reproducibility of results of DeepFall [14] for different models with
different reconstruction errors (RE) to evaluate: (i) computational times, (ii)
AUROC per video, average +/- standard deviation across all videos of the test
set, and (iii) AUC (ROC and PR) for all test videos.

Models RE Time AUROC per video AUC all videos
Training Testing [14] Ours ROC PR

DSTCAE
UpSampling

rσ

309.52 min
49.88s 0.96(0.03) 0.96(0.02) 0.96 0.29

rµ 48.61s 0.95(0.04) 0.94(0.04) 0.88 0.23
r 47.11s − 0.94(0.04) 0.89 0.24

DSTCAE
Deconvolution

rσ

311.01 min
56.31s 0.96(0.02) 0.96(0.02) 0.96 0.27

rµ 55.94s 0.94(0.04) 0.94(0.04) 0.88 0.23
r 54.92s − 0.94(0.04) 0.89 0.21

DSTCAE
C3D

rσ

310.50 min
55.98s 0.97(0.02) 0.96(0.03) 0.95 0.25

rµ 54.52s 0.93(0.07) 0.90(0.07) 0.85 0.19
r 54.23s − 0.91(0.06) 0.87 0.21

deviation (in brackets) for all the test videos in order to compare our reproduced
results with the paper [14].

We can observe that we were able to reproduce the paper results correctly,
some slight differences are possibly due to different model weight initialization.
We can also observe that all three models perform equivalently well with r and
rµ. Even though we do not observe a high difference in testing times for models
with r, rµ and rσ but still models with r takes the least time. This is because
calculating cross-window RE score induces latency in the system (need to wait
for scores of next 7 frames to calculate score for current frame) while for r we can
get the frame score at current window without any delay. In our experiments,
C3D model did not outperform the other two models contrary to the claim
in DeepFall [14]. We can observe that all models have similar performance for
rσ, however for rµ and r, DSTCAE-UpSampling and DSTCAE-Deconvolution
have performed slightly better than C3D model. The training time is observed
as approximately the same for all models. UpSampling models are the fastest
during testing and with the best performance.

To qualitatively understand the difference between ROC and PR curves com-
puted on the whole test set, as explained in Section 3.5, Fig. 7 plots these two
curves for the different models and RE scores. The ROC curve shows overall
good performance for all the models, but we can remark that models with rσ

perform superior to others. However, all models have very poor performances in
the PR curve, showing that the fall class is not well separated from the non-fall
class.

In order to quantitatively assess these results, we can refer to the column
“AUC all videos” of Table 1. The AUROC values show that the models with rσ
do not degrade their performance in comparison to AUROC per video, indicating
that this RE score is able to capture inter-video variabilities well. The models
with rµ and r show an approximately 6% degradation in performance. But AU-

59

14 Lohani et al.

Fig. 7: ROC (top) and PR (bottom) curves (of type “all videos”) for the fall
detection task, for different models and RE scores.

ROC score is not preferred for highly a imbalanced dataset because ROC curves
may provide an excessively optimistic view of the performance [2]. Instead, when
dealing with highly skewed datasets, PR curves give a more informative picture
of an algorithm’s performance [4]. This is the case in fall detection because
fall frames are rare in the videos, hence the fall test set has highly imbalanced
class proportion. In other words, AUPR is more sensitive to misclassification of
fall classes. Contrary to the AUROC scores, we can observe that we have poor
AUPR scores for all the models. This indicates that these models are not able
to correctly detect falls in videos.

5.2 Application to the Perimeter Intrusion Detection task

Fig. 8 shows the evolution of reconstruction error r for a test video from Perime-
ter Intrusion dataset when tested with DSTCAE-UpSampling. The normal ac-

60

Spatio-Temporal ConvAE for PID 15

tivity (no intrusion) has a low r score. When an intrusion enters the video, the
r score starts increasing and reaches a peak when the intruder is closest to the
camera. This r score decreases as the intrusion goes far away from the camera
and gradually disappears. We can also observe that there are three peaks and
they correspond to intrusion activities.

Fig. 8: Evolution of reconstruction error r for a test video from Perimeter Intru-
sion dataset. The original (64× 64 resized), reconstructed and error frames are
shown for an intrusion (top) and a normal activity (bottom). The three peaks
correspond to intrusion activities with high r score.

61

16 Lohani et al.

Fig. 9: ROC (top) and PR (bottom) curves for the perimeter intrusion detection
task, for different models and RE scores.

The three images below the curve show the original frame at the point,
its reconstructed frame and the associated error map. We can observe that for
normal activity, the error map correctly reveals no movement activity of the
parked cars and thus no intrusion. In the images above the curve, we can see
the image associated with a high reconstruction error score. We can observe
that the reconstructed frame and error map shows the movement information of
two intruders (two cars), thus correctly detecting an intrusion frame with high
reconstruction error score.

Fig. 9 shows the ROC and PR curves for the perimeter intrusion detection
task tested over all the videos of the test set, for different models and RE scores.
We can observe that in ROC curve, it is difficult to assess which model has better
performance. The PR curve however highlights the differences among models.
We observe that UpSampling rσ (in blue) and C3D rσ (in pink) have similar

62

Spatio-Temporal ConvAE for PID 17

Table 2: Results on perimeter intrusion detection task for different models with
different reconstruction errors (RE) to evaluate: (i) computational times, and
(ii) AUC (ROC and PR) for all test videos of the Perimeter Intrusion dataset.

Models RE Time AUC all videos
Training Testing ROC PR

DSTCAE
UpSampling

rσ 55.19s 0.93 0.88
rµ 590.25 min 52.05s 0.91 0.81
r 51.24s 0.92 0.83

DSTCAE
Deconvolution

rσ 61.15s 0.93 0.86
rµ 594.95 min 59.57s 0.91 0.80
r 58.55s 0.91 0.82

DSTCAE
C3D

rσ 60.38s 0.90 0.81
rµ 591.10 min 59.46s 0.91 0.80
r 57.98s 0.91 0.82

ROC curves but their PR curves clearly show that UpSampling rσ has better
performance (larger area).

To quantitatively analyze these curves, AUC are listed in Table 2. We report
the AUROC and AUPR scores over all the videos of the test set. We observe that
the training and testing time is almost similar for all the models. Even though all
models have approximately the same performance in terms of AUROC score, we
observe that DSTCAE-UpSampling rσ has highest performance of 0.88 in terms
of AUPR score. Furthermore, it can be observed that upsampling models have
lowest computational times. Unlike for Fall detection task, C3D models rank
last among other evaluated models. Here, the gap between AUROC and AUPR
scores is smaller than in the case of the fall detection (Table 1). This indicates
that our models perform well regardless of the evaluation measure. The results
without cross-window scores, i.e. with r models, are close to models with rσ and
rµ. Furthermore, since the r score of the current frame is obtained only from the
current window (inducing zero latency), it is compatible to be used in a real-time
setting. Results indicate that the 3D convolutional autoencoder can successfully
model intrusion events unsupervisely.

5.3 Discussion

Since both perimeter intrusion detection and fall detection have highly imbal-
anced classes, thus AUPR is more suitable metric than AUROC. We observe
that evaluated architectures have a better performance in perimeter intrusion
detection as compared to fall detection in terms of AUPR scores. Furthermore,
the gap between AUROC and AUPR scores is lower in intrusion detection in
comparison to fall detection. This can be attributed to the fact that in intrusion
detection we are trying to detect movement of an intruder in a designated space:
the results show that the 3D convolutional autoencoder is able to capture any
movement well with the 3D spatio-temporal convolutions. However, in fall de-
tection, we have a more difficult problem: the model needs to detect a particular

63

18 Lohani et al.

type of movement, i.e. fall of a person, but not the other movements like walk-
ing, running, gesticulating, etc. As results demonstrate, the 3D convolutional
autoencoder classifies the two classes with lower performances in this case.

In convolutional autoencoders, there are two methods to apply a deconvolu-
tion operation [5]: (i) an upsampling (interpolation step) followed by a convolu-
tion (filtering step), and (ii) a deconvolution, also called a transposed convolu-
tion, which learns the weights in a single step. Concerning 3D networks, there
is no evidence about the best method to deconvoluate 3D data. On both tasks,
the UpSampling based method seems to be faster with better detection scores
than the Deconvolution one, although these improvements are quite marginal.

6 Conclusion

In this paper, we evaluated different forms of a 3D convolutional autoencoder for
two unsupervised tasks. We also introduced a new metric called “AUROC/AUPR
for all videos” which evaluates capability of a model to capture inter-video vari-
abilities. On the task of reproducibility of fall detection, we successfully repro-
duced the results of the Deepfall paper. We conclude that models with rσ as
reconstruction error have highest performance both in terms of AUROC per
video and AUC for all videos. We observe a degradation in performance of mod-
els with r and rµ when evaluated for AUROC all videos. This shows that rσ
captures inter-video variabilities better than other two metrics. The high gap
between AUROC and AUPR values shows the limitation of current models for
the fall detection task.

We further evaluated these models for perimeter intrusion detection in a
challenging thermal video dataset. We can conclude that we have approximately
similar performance for all the models. The models with upsampling were the
fastest during testing and provided best results with rσ. We observe that we
have a smaller gap between AUROC and AUPR scores as compared to the fall
detection results. This shows that these models capture inter-video variabilities
better for the task of perimeter intrusion detection. Our results indicate that the
3D autoencoder models intrusion detection very well. To our knowledge, it is the
first time that intrusion detection was carried out in a completely automatic and
unsupervised manner.

For future works on the intrusion detection task, robustness of the model
on different lighting conditions, sudden changes of luminosity and very slow
intruder displacement needs to be further examined. We will also explore ways
on how to choose a fixed threshold for the RE score, in order to allow a practical
implementation of this PIDS.

References

1. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Spatio-temporal
convolutional sparse auto-encoder for sequence classification. In: BMVC. pp. 124.1–
124.12 (2012)

64

Spatio-Temporal ConvAE for PID 19

2. Branco, P.O., Torgo, L., Ribeiro, R.P.: A survey of predictive modelling under
imbalanced distributions. arXiv preprint arXiv:1505.01658 (2015)

3. Chong, Y.S., Tay, Y.H.: Abnormal event detection in videos using spatiotemporal
autoencoder. In: ISNN. pp. 189–196 (2017)

4. Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC
curves. In: ICML. pp. 233–240 (2006)

5. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285 (2016)

6. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit Lett 27, 861–874
(2006)

7. Fennelly, L.J., Perry, M.: Physical security: 150 things you should know.
Butterworth-Heinemann (2016)

8. Garcia, M.L.: Vulnerability assessment of physical protection systems. Elsevier
(2005)

9. Gulli, A., Pal, S.: Deep learning with Keras. Packt Publishing Ltd (2017)
10. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human

action recognition. IEEE Trans Pattern Anal Mach Intell 35, 221–231 (2012)
11. Kim, S.H., Lim, S.C., et al.: Intelligent intrusion detection system featuring a vir-

tual fence, active intruder detection, classification, tracking, and action recognition.
Ann Nucl Energy 112, 845–855 (2018)

12. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.:
Deep learning for generic object detection: A survey. Int J Comput Vis 128, 261–
318 (2020)

13. Nogas, J., Khan, S.S., Mihailidis, A.: Fall detection from thermal camera using
convolutional LSTM autoencoder. In: ARIAL Workshop, IJCAI (2018)

14. Nogas, J., Khan, S.S., Mihailidis, A.: Deepfall: Non-invasive fall detection with
deep spatio-temporal convolutional autoencoders. J Healthc Inform Res 4, 50–70
(2020)

15. Norman, B.C.: Assessment of video analytics for exterior intrusion detection ap-
plications. In: ICCST. pp. 359–362 (2012)

16. Prakash, U., Thamaraiselvi, V.: Detecting and tracking of multiple moving objects
for intelligent video surveillance systems. In: ICCTET. pp. 253–257 (2014)

17. Saran, K., Sreelekha, G.: Traffic video surveillance: Vehicle detection and classifi-
cation. In: ICCC. pp. 516–521 (2015)

18. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional
LSTM network: A machine learning approach for precipitation nowcasting. In:
NIPS. pp. 802–810 (2015)

19. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3D convolutional networks. In: ICCV. pp. 4489–4497 (2015)

20. Vadivelu, S., Ganesan, S., Murthy, O.R., Dhall, A.: Thermal imaging based elderly
fall detection. In: ACCV. pp. 541–553 (2016)

21. Vijverberg, J.A., Janssen, R.T., de Zwart, R., de With, P.H.: Perimeter-intrusion
event classification for on-line detection using multiple instance learning solving
temporal ambiguities. In: ICIP. pp. 2408–2412 (2014)

22. Wang, X., Xie, W., Song, J.: Learning spatiotemporal features with 3DCNN and
ConvGRU for video anomaly detection. In: ICSP. pp. 474–479 (2018)

23. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks.
In: CVPR. pp. 2528–2535 (2010)

24. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoen-
coder for video anomaly detection. In: ACM MM. pp. 1933–1941 (2017)

65

Pith Estimation on Tree Log End Images

Rémi Decelle1, Phuc Ngo1, Isabelle Debled-Rennesson1, Frédéric Mothe2 and
Fleur Longuetaud2

1 Université de Lorraine, CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy,
F-54506, France

2 Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
remi.decelle@loria.fr

Abstract. In this paper, we present an algorithm for pith estimation
from digital images of wood cross-sections. The method is based on a
probabilistic approach, namely ant colony optimization (ACO). After
introducing the approach, we describe the implementation and the re-
production of the method linking to an online demonstration. Results
show that the approach performs as well as state-of-the-art methods.
The estimated pith is below 5mm from the ground truth. It is a fast
method that could be used in real-time environment. This paper also
gives the details about the intern parameter choice and shows how to
use the C++ source code for testing, as well as provides limit cases of
the proposed method and future improvements.

Keywords: Agent-based method, Local orientation, Hough transform

1 Introduction

The centre of the annual rings, also called pith, is one of the most important
feature to be detected since it can be related to wood quality [1,8,20] and it al-
lows to extract other features on log-end image [6,7,10,17] such as annual rings,
ring widths, knots, heartwood and sapwood. In the literature, several meth-
ods have been proposed for pith detection on log cross-sections. Most of them
[2,3,9,14,15,24] have been developed for X-ray computed tomographic (CT) im-
ages. The techniques based on CT images allow an efficient and robust detection
of external and internal characteristics of tree logs, including the pith. However,
the CT scanners are very expensive, and not every laboratory or wood-industry
sites (e.g., sawmills) can acquire such a device.

Recently, there have been some efforts to develop pith detection methods
on RGB images of cross sections from tree logs [12,13,19,21]. Contrary to CT
images, RGB images exhibit disturbances like sawing marks, dirt or ambient
light variations, which make the detection more challenging (see Fig. 1). On the
other side, the acquisition of such images can be done with low-cost and more
accessible devices (e.g., smartphone camera, industrial camera, . . .) and could be
used everywhere, from the forest on the harvester, to the sawmill stocking area,
or at the road side for wood sells. Furthermore, the current camera technologies

66

2 R. Decelle et al.

(a) (b) (c) (d) (e)
Fig. 1: Examples of image for pith detection: (a-b) CT images, (c-e) digital images
captured in log-yard. Digital images taken in realistic environments may contain dis-
turbances: (c) light condition, (d) soiling and dirt, (e) sawing marks.

provide images of quality and high resolution, and this allows us to extract the
wood quality features, including pith, on such images using the image processing
methods.

To the best of our knowledge, four works [12,13,19,21] have been published
in the context of pith detection on digital images of rough, untreated log ends.
Except in [12] which uses a deep neural network (DNN), the others rely on tree
ring analysis and use image processing tools for the detection. More precisely, it
is assumed that most tree rings close to the pith approximate a circular shape,
and thus the normal directions of these rings would point towards the pith.
Based on this idea, the pith detection is generally processed in three steps:

1. Estimate normal directions from tree ring local orientations.
2. Accumulate the normals in an accumulation space.
3. Extract the pith from the accumulation space.

Generally, Hough transform [5] is used as accumulator of normal directions,
then the pith is identified at the point with maximum accumulation, or the
barycenter of points above a given accumulation threshold. In other words, the
pith detection methods differ at the local orientation estimation step. In [19],
Norell and Borgefors presented two detection methods using two different tech-
niques to estimate the normal directions: the quadrature filters and the Laplacian
pyramids. The proposed methods are robust to disturbances; e.g., rot, dirt or
snow. However, a prior segmentation of the log end is needed before the detec-
tion. Later, Schraml and Uhl [21] proposed to compute the local orientations
with Fourier spectrum analysis. The approach was fast, robust, and accurate in
estimating the pith position. It, however, requires some preconditions about the
cross-section size and its location in the image for initializing the computation.
Recently, Kurdthongmee et al. [13] used histogram of oriented gradient (HOG)
to estimate normals of the tree rings. As stated in the paper, the algorithm pro-
vides only an approximation of the pith location, and needs more treatments to
identify it exactly.

In this paper, we propose a general method to estimate pith location on
digital images taken in realistic environments; e.g., in the sawmill, forest, log-
yard, or on the road. The raw images are directly processed without any prior
segmentation nor knowledge of log end visual appearance, shape or location. In

67

Pith Estimation on Tree Log End Images 3

particular, the proposed method must not only provide accurate pith estimation,
but also be efficient in computation time to be used in real-time applications.
To this end, we consider a smooth gradient based method to compute local ori-
entations; this method was originally used for fingerprint images [11]. Then, a
probabilistic approach, based on Ant Colony Optimization (ACO) [4], is per-
formed to accumulate the normals of tree rings in a robust way. Finally, the pith
is located at the barycenter of points above a given accumulation threshold.

The proposed method is described in the following section (Section 2), with
the details of the local orientation computation and the ACO algorithm. Section 3
gives the description of the source code and its usage. The experimental results
and parameter discussions are addressed in Section 4, followed by the conclusion.

2 Algorithm for pith detection

The proposed algorithm to estimate pith location on digital images is composed
of four steps. Firstly, a pre-processing is applied on input image to remove sawing
marks visible on log ends. In case of high-resolution images, a resizing step can
be applied to reduce the computation time. Secondly, we compute local orien-
tations for pixels of the pre-processed image. Then, the ACO algorithm is used
to accumulate the normals, and finally extract the pith from this accumulator.
For an accurate pith estimation, the ACO algorithm and the pith extraction are
performed twice: the first to coarsely estimate the pith region, and the second
for the precise pith location.

2.1 Pre-processing image

Pith estimation methods based on ring analysis strongly depend on local orien-
tation estimations. In this paper, we work with raw images in which there might
be sawing marks on rough log ends. The presence of sawing marks perturbs
the orientation estimations. To reduce errors induced by sawing marks and also
computation time, we perform this pre-processing step. Firstly, the input image
is converted into gray-scale, then down-sampled with a factor s using bi-linear
interpolation. Secondly, we remove sawing marks using the method proposed in
[18] which is based on Fast Fourier Transform (FFT).

Typically, sawing marks are straight lines being parallel or in fan-shape and
not always evenly spaced. This repetitive pattern suggests that filtering in the
Fourier domain is suitable to reduce them. Indeed, in the Fourier spectrum, they
correspond to the line passing through the centre with a direction perpendicular
to them. In other words, the energy level will be high along this line. There-
fore, by reducing this energy and converting filtered spectrum back to spatial
domain, sawing marks can be removed or at least reduced. More precisely, we
first compute a Fast Fourier Transform (FFT) and filter the Fourier spectrum
with a band-pass filter, also remove both horizontal and vertical lines. Then,
we threshold it with a value λ to filter high value energy points corresponding
to sawing marks. A line fitting, using principal component analysis (PCA), is

68

4 R. Decelle et al.

(a) Input (b) FFT (c) Thresholding

(d) Detected line (e) Sawing mark removal (f) Local orientation

Fig. 2: Removing sawing marks and estimation of local orientations: (a) input gray-
scale image, (b) FFT of (a), (c) threshold (b) with λ = 0.875, (d) detected line after
convoluted with a Gaussian of σ = 6, (e) image after removing sawing marks, and (f)
estimated local orientations (red lines) on (e).

applied on the obtained points to find the direction of the line. This line is fur-
ther convoluted with a Gaussian filter of standard deviation σ, and pixel-wise
multiplied with the original Fourier spectrum to reduce energy along the line.
The result is transformed back into a spatial image using the inverse FFT. The
process is illustrated in Fig. 2 (a-e).

2.2 Local orientation

After removing sawing marks, we now compute normal directions for blocks of
pixels in the image using a smooth gradient based method. The method was
used in [11] to assess the local orientation in fingerprint images. It is a least
mean square orientation estimation in a local area, namely a window of size w.
More precisely, the gradient ∇(u, v) = [∇x(u, v), ∇y(u, v)]t is estimated for each

69

Pith Estimation on Tree Log End Images 5

block centered at pixel (u, v) as follows.

∇x(u, v) =
i=v+ w

2∑

i=u− w
2

j=v+ w
2∑

j=u− w
2

2δx(i, j)δy(i, j) (1)

∇y(u, v) =
i=v+ w

2∑

i=u− w
2

j=v+ w
2∑

j=u− w
2

δ2
x(i, j)δ2

y(i, j) (2)

where δx(i, j) and δy(i, j) are the derivatives with respect to x and y of the pixel
(i, j). The derivatives are estimated by a Sobel operator [22]. Then, the local
orientation of the block centered at (u, v) is computed as:

θ(u, v) = 1
2 tan−1

(∇y(u, v)
∇x(u, v)

)
(3)

Fig. 2 (f) shows an example of local orientations estimated by this method.

2.3 Ant colony optimization

We now describe the process of accumulating normals using ACO which is an
algorithm inspired by the behavior of ant species. Ants deposit pheromones that
help other ants of the colony to make the best choice in their goal. Ant system
[4] was the first ACO algorithm, it is applied for solving different combinato-
rial optimization problems; e.g., traveling salesman problem (TSP), quadratic
assignment problem (QAP) and the job-shop scheduling problem (JSP). Since
then, a large number of ACO algorithms have been developed to address various
problems like edge detection [16,23]. It has, to our knowledge, never been used
as accumulator of local orientations.

The main idea of the proposed method is that a certain number of ants
are uniformly placed on the rough log-end image. They can freely move on the
image and use normal values as pheromones. Their final goal is the pith. Each
ant iteratively lays down pheromones as it moves towards the pith, and they all
move towards the pith area where there is a high quantity of pheromones. The
process is summarized in Alg. 1. Hereafter, we describe in details the different
steps of the proposed ACO algorithm.

Initialization (Line 1 and 2 in Alg. 1) Let K × K be the number of ants and
π(t) be the pheromone matrix at iteration t. At the beginning, K ants are placed
in an uniform grid on the pre-processed image, and the pheromone matrix π(0)

is initialized with random values drawn from a normal distribution.

Computation of probabilistic transition matrix (Line 5 to 9 in Alg. 1) An
ant can move randomly with a probability that evolves during the optimization.

70

6 R. Decelle et al.

Algorithm 1: Ant colony optimization for normal accumulation
Input: The estimated local orientations Iθ

The number of ants K × K
The maximum number of iterations N
The number of block clusters around an ant n × n
The size of each block cluster ω × ω pixels

Output: The pheromone matrix π
Variables : ηt

k: The desirability matrix of the kth ant at iteration t
τ t

k: The probabilistic transition matrix of the kth ant at iteration t
ρt

k: The deposited pheromone matrix of the kth ant at iteration t
πt: The pheromone matrix at iteration t

1 Initialize the positions of the K ants
2 Initialize the pheromone matrix π0

3 for t = 1 . . . N do
4 for k = 1 . . . K2 do
5 Let (a, b) be the position of the kth ant

/* Compute the deposited pheromone matrix ρt of the kth ant */
6 Let B be the n × n block clusters of size ω × ω centered at (u, v) in Iθ

7 foreach h ∈ B do
8 Let (ox, oy) be the median value of local orientations of h
9 Let l be the line of orientation (ox, oy) passing through (u, v)

10 Increase ρt
k by 1 along l

/* Compute the desirability matrix η of the ant to move
towards a position (u, v) */

11 foreach (u, v) ∈ ηt
k do

12 ηt
k(u, v) = 1√

(u−a)2+(v−b)2+1

/* Compute the probabilistic transition matrix ρ of the ant to
move towards a position (u, v) */

13 foreach (u, v) ∈ τ t
k do

14 τ t
k(u, v) = (πt(u,v))α(ηt

k
(u,v))β∑

i,j
(πt(i,j))α(ηt

k
(i,j))β

/* Move the ant according to the probabilistic transition
matrix τ t

k */
15 Let (x, y) be the position of the maximum probability in τ t

k

16 Move the ant to the position (x, y)
/* Update the pheromone matrix πt after all K ants moved */

17 πt+1 = (1 − γ)πt +
∑K

k=1 ρt
k

/* Early-stopping criteria */
/* Compute the new pith position */

18 The current pith position pt+1 is estimated according to πt+1

/* Compute the distance between the current and the last pith
position */

19 dt+1 = ‖pt+1 − pt‖2
/* Compute the average of the last five distances */

20 ad = 1
5
∑t+1

k=t−3 dk

21 if ad < ε then
22 Break

23 Return π(N)

71

Pith Estimation on Tree Log End Images 7

At iteration t, the probability for an ant k, currently at position (a, b), to move
to the position (u, v) is defined by:

τ t
k(u, v) =

(
πt(u, v)

)α(
ηt

k(u, v)
)β

∑
i,j

(
πt(i, j)

)α(
ηt

k(i, j)
)β

(4)

where τ t(u, v) is the amount of pheromone at (u, v), ηt
k(u, v) is the desirability

of the kth ant to move towards (u, v), and equal to the inverse distance from
(u, v) to (a, b):

ηt
k(u, v) = 1√

(u − a)2 + (v − b)2 + 1
(5)

The desirability can be seen as a weighting of pheromone matrix. It aims to
ensure ants having a higher probability to move towards local maxima and not
towards the global one. α and β are respectively parameters to control the influ-
ence of τ t

k(u, v) and ηt
k(u, v). The ratio α

β allows to modify the behavior of ants; a
high ratio value leads ants to move more quickly to the pheromone peaks, while
a low value leads ants to continue to explore areas in image.

Pheromone deposit (Line 12 to 16 in Alg. 1) Each ant is the centre of
an image block cluster. The cluster consists of n × n blocks, and each block
has a size of ω × ω pixels. For each block cluster, the median value of local
orientations (see Section 2.2) is considered as the block orientation. Then a line
is drawn according to the orientation and passing through (u, v). All elements of
the deposited pheromone matrix ρt

k along the line are incremented by 1. Indeed,
depositing pheromones along the whole line allows to include lines intersections
which could not happened if pheromone deposit is locally done. Fig. 3 illustrates
this step of pheromone deposit of an ant.

Updating the pheromone matrix (Line 17 in Alg. 1) The pheromone matrix
is updated once all ants have moved:

πt+1 = (1 − γ)πt +
K∑

k=1
ρt

k (6)

where ρt
k is the deposited pheromone matrix of the kth ant at iteration t, and γ

is the rate of pheromone evaporation; the higher γ is, the faster pheromones are
removed.

The process is repeated maximum N times (Line 3 in Alg. 1). In order to
reduce computational time, the pheromone matrix πt is resized by a factor m
comparing to the pre-processed image I. In other words, if I is of size H × W ,
then πt is of size H

m × W
m .

72

8 R. Decelle et al.

Fig. 3: Left: Image with the ants in yellow crosses, the pith in red, a cluster of 3 × 3
blocks of size 8 × 8 pixels and normals (according to the cluster) in green lines. Right:
Normal accumulation by pheromone matrix with the considered ant in yellow cross,
the 9 green lines corresponding to the normal directions of the block clusters and the
pith estimation in red.

2.4 Pith extraction

To extract the pith position from the pheromone matrix π, we take the barycen-
tre of all the pixels above κ ∗ max(τ) in π. Indeed, taking the maximum value of
accumulation is less robust than the barycentre of the highest values. Note that
the higher κ is, the more sensitive to small variations the pith estimation is.

Furthermore, we introduce an early stopping criterion in Alg. 1. At each
iteration t, we estimate the pith location and compute the distance between
the current and the last estimation. Instead of running for N iterations, the
algorithm could stop as soon as the average of the last five distances falls below
a threshold ε.

3 Code sources

3.1 Download and installation

The proposed method is implemented in Matlab 2019b and C++ using the open
source library OpenCV3 (OPEN Computer Vision). Both implementations are
available at the github repository:

https://gitlab.com/Ryukhaan/treetrace/-/tree/master/pith

The installation is done with a cmake4 procedure (see README.md5). In the
following, we focus on the C++ implementation.
3 https://opencv.org/
4 http://www.cmake.org
5 https://gitlab.com/Ryukhaan/treetrace/-/blob/master/README.md

73

Pith Estimation on Tree Log End Images 9

3.2 Description and usage

The repository has four packages:
• aco computes the Ant Colony Optimization algorithm for one image;
• normals computes normal accumulations using Bresenham lines;
• orientation computes local orientations for one image;
• ui manages the display (pheromones, ants position on image, and so on).

Once the installation is done, the executable file is in the build directory and
named AntColonyPith.

• Input: The image to be processed;
• Command Line: To run the program from the CODESOURCES/build

./AntColonyPith --input=path to image [list of parameters]

./AntColonyPith --input path to image --parameters path to parameters.json

For instance, to run the program on harvest.jpeg with default parameters

./AntColonyPith --input ../../samples/harvest.jpeg

To run the program on harvest.jpeg with 10×10 ants, α = 1.0 and without
animation

./AntColonyPith --input ../../samples/harvest.jpeg --ant=10 --alpha=1.0
--animated=false

or

./AntColonyPith --input ../../samples/harvest.jpeg -n 10 -a 1.0 --animated=false

To run the program on harvest.jpeg with parameters in parameters.json

./AntColonyPith --input ../../samples/harvest.jpeg
--parameters ../AntColonyPith/parameters.json

More details about the options are given in the command line helper.

./AntColonyPith --help

The options can be provided in two ways:
• using command line with usual options,
• providing a JSON file with all parameters (an example of JSON file,

namely parameters.json6, is provided within the repository).
• Output: Two files are created. The first one consists of the detected pith

position in CSV format. The second one is an image of the input image with
the detected pith denoted by a cross.

6 https://gitlab.com/Ryukhaan/treetrace/-/blob/master/pith/c++/
AntColonyPith/parameters.json

74

10 R. Decelle et al.

Fig. 4: Examples from Besle (the first two rows) and BBF (the last row) datasets.

4 Experimental results

4.1 Experiments on real images

We experiment our algorithm on two datasets obtained from Douglas fir trees:
Besle consists of 65 images and BBF consists of 40 images (see Fig. 4 for some
examples). RGB images are converting into grayscale using the usual weighted
method. Both datasets include the raw log ends taken in the forest or log yard,
the images contain different disturbances such as sawing marks, dirt and light
variations. Some visual results are shown in Fig. 5 by running the proposed
method with the default parameters. The values of default parameters are given
in the file parameters.json6. Further experiments about computation time and
algorithm convergence are presented in the next sections. Note that we take the
average value overall experiments on images in both datasets.

4.2 Accuracy of the method

For our implementation, we process twice the described method Section 2. RBG
image are converted into grayscale (with the function imread and the option
IMREAD GRAYSCALE from Opencv). The first run is to coarsely estimate
the pith while the second run is for a precise pith estimation. For the first run,
we split the image into 4 × 4 sub-images to manage the sawing marks removal
(see Section 2.1). After retrieving the first pith estimation, this latter is converted
back to coordinate of the original image. We select a sub-image of size 512 × 512
pixels centered on it and process again the algorithm (including the preprocessing
without subdivision).

Ground truths were done by two operators. Each operator independently, for
each image, pointed the pith. The truth is the average of these two measures.

To determine the parameters’ values, we manually minimized over the whole
BBF dataset the sum of distances between ground truths and results. Then,

75

Pith Estimation on Tree Log End Images 11

Fig. 5: Pith position (black cross) detected by the proposed method on raw log-end
images using default parameters.

Table 1: Pre-processing parameters for both steps. H is the height of the Fourier
spectrum.

λ δ σ Band-pass
For the both stages 0.875 0.4 6 H

3 < f < H
64

we validated those values on Besle dataset. Tables 1 shows the parameters
obtained for the preprocessing. Parameters for the ACO-based algorithms are
set as follows (the values are the same for both phase unless otherwise indicated):

– K = 16: the number of ants K × K;
– α = 2.0: the control of the pheromone influence in (4);
– β = 1.0: the control of the heuristic influence in (4);
– γ = 0.07: the evaporation rate in (6);
– m = 5 for the first run then m = 2 for the second one: how many pixels an

element in the matrix τ stands for;
– n = 3: the size of the blocks cluster (see Section 2.3);
– ω = 8: the size in pixels of a block (see Section 2.3);
– κ = 0.8: threshold to the barycentre (see Section 2.4)
– ε = 2 for the first run then ε = 0.5: the thresh to early stop the algorithm.
– N = 50: the maximum number of iterations;

We have compared our results with [12], [13] and [21] on our datasets. For
the algorithm of Kurdthongmee et al.,[13], we get optimized parameters with a

76

12 R. Decelle et al.

Table 2: Average, standard deviation, minimum and maximum between ground truths
and estimated piths by our method and methods of [21,13,12] methods (in mm) and
average time to proceed one image (in ms).

Besle Mean StDev Min Max Time (ms)

[21] 2.29 0.98 0.39 4.96 8344
[13] 25.06 21.23 2.15 92.44 667
[12] 2.88 1.67 0.87 7.61 138

Our method 2.34 1.02 0.46 5.04 1611

BBF Mean StDev Min Max Time (ms)

[21] 2.39 1.48 0.49 7.59 8660
[13] 38.38 38.91 3.14 232.74 721
[12] 12.69 53.55 0.50 341.92 186

Our method 2.26 1.32 0.44 4.63 1745

subregion of size 24 × 24 pixels and a quantization factor of 12. We also used
optimized parameters of our dataset for Schraml and Uhl algorithm [21]. For
the comparison with the DNN [12], we have done a twofold cross-validation. For
each imageset, half of images have been used for the training and the other half
for the validation. Two models were trained for each imageset by inverting the
training and the validation sets. Ground truths consist of a square of 300 × 300
with the pith position at the center. A data augmentation have been processed
on-the-flight (i.e. each time each image was transformed before passing through
the DNN). The DNN hyperparameters were the same as [12], only input size have
been modified which is 576 × 432 for both imageset (the ground truth is resized
according to that). The DNN returns a box with a probability of finding a pith
in it. The predicted pith is the center of the box with the highest probability. To
compare each method, we have aggregated all predictions from trained models
(which gives us predictions for all images).

Table 2 presents a statistical analysis of the three algorithms on our datasets.
The deep learning method is the fastest but drawbacks are the learning time and
the creation of dataset with ground truths. Our method is, in average, 5 times
faster than [21] and can be easily parallelized. We can observe that both our
method and [21] are more accurate than [12,13]. The results [12] are worse on
BBF imageset, this may be due to the small number of images in it.

Fig. 6 presents boxplots for our method, [21] and [12] to better illustrate the
differences between them. We excluded [13] since the results are less accurate
than the three others. For Besle imageset, our method is a little less accurate
than [21]. [12] is even a little less accurate and presents one outlier (7.61 mm). Its
first and third quartiles are higher than our method and [21]. For BBF imageset,
[21] has one outlier (7.6 mm) and [12] has four outliers above 10 mm.

77

Pith Estimation on Tree Log End Images 13

(a) Boxplot for Besle dataset (b) Boxplot for BBF dataset
Fig. 6: Boxplots of distance between ground truths and pith estimation (in mm) for
[21,12] and our method.

4.3 Effect of parameter changes on computation time
Hereafter, the experiments are carried out to analyse the effects of parameter
changes. First, we focus on computation time then on precision and convergence.

Let estimate the time complexity for one iteration in Alg. 1. Let I be the
input image of size H × W . According to Alg. 1, there are K2 ants, and they
can freely move on I. Let now estimate the time complexity for an ant, namely
the kth ant. Firstly, the desirability matrix η and the probabilistic transition
matrix ρ associated to the kth ant are computed in O(HW

m2). Secondly, for the
pheromone deposit, we must recall that each ant is the centre of an image block
cluster which consists of n×n blocks and each block is of size ω×ω. Therefore, to
estimate the block orientation, we compute n2 times the median of an array of ω2

pixels. This operation is done by sorting the array and costs O(n2ω2 log ω). We
also compute n2 times the deposited pheromone matrix ρt

k along the directional
line l. In the worst case, the length of l is equal to

√
(H

m)2 + (W
m)2. In other

words, the pheromone matrix update is done in O(n2

m

√
H2 + W 2). Finally, the

ant’s position is updated in O(1). Once each ant has moved, the pheromones
matrix πt is updated in O(HW

m2). Therefore, the total time complexity for one
iteration is:

O
(

K2
[
n2ω2 log ω + n2

m

√
H2 + W 2 + 1

m2 HW + 1
]

+ 1
m2 HW

)
(7)

We can simplify this equation by keeping only the main input parameters, which
are K, H and W . The total time complexity is therefore:

O
(

K2
[√

H2 + W 2 + HW + 1
])

(8)

78

14 R. Decelle et al.

Fig. 7: Computation time for one iteration according to the size of input image (in ms).

We now validate this theoretical time complexity by the experiments. Firstly,
it can be seen in Eq. (7) that the method is quadratic with respect to the size
of the input image I. This is confirmed by Fig. 7, we have the computation time
for one iteration according to I.

From Eq. (7), the method has a linear time complexity with respect to the
number of ants K2. Indeed, Fig. 8 (a) shows the computation time according to
K. The number of ants quadratically increases, and thus the computation time.

Still in Eq. (7), the computation time decreases as m increases. Fig. 8 (b)
shows the computation time according to m. It can be seen that having a value
of m higher than 1 is really computationally helpful. Indeed, the matrix π is
widely used during the process, from the pheromones deposit to the pheromones
updates (reducing the size of η, τ and π). Let now look at two parameters:
the block size ω × ω and the number of clusters n × n around the ant. First,
the computation time according to the block size is shown in Fig. 8 (c). As the
number of block is at least one, the computation time does not start at 0. For a
block size of 3×3 it takes in average 243ms, while for a block size of 11×11 it is
259ms. Note that the computation time depends on the length of the line l used
to update ρ (which depends on local orientations). For n, it should be quadratic.
As n should be at least one, the computation time does not start at 0. Fig. 8 (d)
shows the computation time according to n, and it is nearly quadratic. Again,
this is due to the length of l.

4.4 Effects of parameter changes on the convergence

We now analyse the influence of parameters regarding the convergence of the
algorithm. More precisely, the algorithm converges if the Euclidean distance be-
tween two successive estimations does not vary more than one pixel. We compute
the average variations at each iteration over the whole set of images. We also
fit a curve aebx + c for each change in the value of parameters. It is done by

79

Pith Estimation on Tree Log End Images 15

(a) (b)

(c) (d)
Fig. 8: Computation time for one iteration according to (a) the number of ants K, (b)
the size of τ , (c) the block size ω and (d) the cluster size n.

using non linear least squares with trust-region algorithm and for initial value
a = max − min

2 , b = 0 and c = 0.
First, we focus on the number of ants K × K. Fig. 9 shows the convergence

speed according to K. One can see that the more ants are, the fastest the al-
gorithm converges. With only four ants, the algorithm fluctuates between some
positions. However, a high number of ants does not speed up convergence but
makes the convergence point more stable (the parameter c is lower with a high
value of K).

Let us now focus on the block’s size ω. Fig. 11 shows the convergence speed
according to ω. It seems that large block speeds up convergence but not as
sharply as K. It is observed that an increasing in ω seems to slow down the
convergence. This is due to an increase in the deposited pheromones. Indeed,
the higher ω is, there more pheromones in the wrong places are. Therefore, it
requires more iterations to remove those pheromones.

80

16 R. Decelle et al.

Fig. 9: Variation in both axis between the pith estimation at time t and at time t + 1
according to the number K × K of ants.

Fig. 10: Variation in both axis between the pith estimation at time t and at time t + 1
according to the cluster size ω.

Let us now consider the number of blocks n. Fig. 10 shows the convergence
speed according to n. Contrary to intuition, a large number of blocks does not
lead to an important acceleration of convergence, but it slows the algorithm
down. This could be due to a less accurate local orientation with larger blocks.

Finally, we look at m. As a reminder, the higher m is, the smaller τ is.
Fig. 12 shows the convergence speed according to m. It appears that m slightly
speeds up the convergence. Raising the value of m causes a slightly decelera-

81

Pith Estimation on Tree Log End Images 17

Fig. 11: Variation for both axis between the pith estimation at time t and at time t + 1
according to the block size n.

Fig. 12: Variation in both axis between the pith estimation at time t and at time t + 1
according to the parameter m.

tion the convergence. It could be explained by the fact that with a small τ the
small variations in the local orientation are not considered when ants deposits
pheromones.

4.5 Limit cases

Our algorithm relies mainly on tree ring analysis. In other words, if the tree
rings are not well presented in the input log-end image, then the detection result

82

18 R. Decelle et al.

Fig. 13: Examples of wrong pith estimation. Left: The tree rings are in low resolution
and the sawing marks are not straight lines. Right: the sawing marks are straight lines
but tree rings are in low resolution and really small.

could be inaccurate. Fig. 13 shows some examples in which tree ring analysis is
difficult and leads to a wrong pith estimation by using the proposed method.
These two examples are not from both datasets. Indeed, our algorithm works very
well on introduced datasets (no outliers). In both examples, it can be observed
that tree rings are barely visible that makes difficult their analysis. Indeed, the
pre-processing step may remove information about tree rings, which leads our
algorithm to an inaccurate pith estimation. Furthermore, there are many other
disturbances on such images; for instance, the sawing marks are not straight
lines as we assumed in Section 2.1, or the presence of log-tree cracks.

4.6 Image credits

All images used in this paper are from the French National Research Agency,
in the framework of the project TreeTrace, ANR-17-CE10-0016. Some samples
(images in Fig. 5 and Fig. 13) are available for testing on the github repository7.

5 Conclusion

In this paper, we presented a probabilistic method for detecting pith position on
digital images of rough, untreated log ends. More precisely, the proposed method
is based on ant colony optimization (ACO) to robustly accumulate the normals
of ring tree, then the pith location is extracted from this accumulation space as
barycenter of points above a threshold. The experiments demonstrated that the
proposed method provides not only an accuracy pith estimation (a distance of
7 https://gitlab.com/Ryukhaan/treetrace/-/tree/master/pith/samples

83

Pith Estimation on Tree Log End Images 19

less than 5 mm from the ground truths), but also is efficient in computation time
and it could be used in real-time applications. In addition to the implementation
of the method, an online demonstration is available for testing at:

https://ngophuc.github.io/ACO_PithDetection_IPOLDemo

It could be noticed that the algorithm has many parameters. Though, they
are set with default values and allow a good performance on tested images.
Generally, the algorithm provides a very accurate pith estimation. A study on
the role and effect of the different parameters is addressed in the paper for a
better understanding of the parameters on the presented method. Based on this
study, a perspective is to reduce the number of parameters and further provide an
automatic approach to determine the best parameters adapted to a given image
or a set of images of same characteristic. Furthermore, for reducing computation
time of the algorithm, parallelism should be considered in future work.

Acknowledgment

This research was made possible by support from the French National Research
Agency, in the framework of the project TreeTrace, ANR-17-CE10-0016.

References

1. Akachuku, A., Abolarin, D.: Variations in pith eccentricity and ring width in teak
(tectona grandis lf). Trees 3(2), 111–116 (1989)

2. Bhandarkar, S.M., Faust, T.D., Tang, M.: A system for detection of internal log
defects by computer analysis of axial ct images. In: Proceedings of the 3rd IEEE
Workshop on Applications of Computer Vision (WACV ’96). p. 258. IEEE Com-
puter Society, USA (1996)

3. Boukadida, H., Longuetaud, F., Colin, F., Freyburger, C., Constant, T., Leban,
J., Mothe, F.: Pithextract: A robust algorithm for pith detection in computer to-
mography images of wood–application to 125 logs from 17 tree species. Computers
and electronics in agriculture 85, 90–98 (2012)

4. Dorigo, M., Maniezzo, V., Colorni, A., et al.: Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, man, and cybernetics, Part
B: Cybernetics 26(1), 29–41 (1996)

5. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves
in pictures. Communications of the ACM 15(1), 11–15 (1972)

6. Entacher, K., Planitzer, D., Uhl, A.: Towards an automated generation of tree ring
profiles from ct-images. In: Image and Signal Processing and Analysis (ISPA). 5th
International Symposium on. pp. 174–179. IEEE (2007)

7. Fabijanska, A., Danek, M., Barniak, J., Piórkowski, A.: Towards automatic tree
rings detection in images of scanned wood samples. Computers and Electronics in
Agriculture 140, 279–289 (2017)

8. Fallah, A., Riahifar, N., Barari, K., Parsakhoo, A.: Investigating the out-of-
roundness and pith-off-centre in stems of three broadleaved species in hyrcanian
forests. Journal of Forensic Sciences 58, 513–518 (2012), https://doi.org/10.
17221/13/2012-JFS

84

20 R. Decelle et al.

9. Gazo, R., Vanek, J., Abdul Massih, M., Benes, B.: A fast pith detection for com-
puted tomography scanned hardwood logs. Computers and Electronics in Agricul-
ture 170, 105–107 (2020)

10. Hanning, T., Kickingereder, R., Casasent, D.: Determining the average annual ring
width on the front side of lumber. In: Optical Measurement Systems for Industrial
Inspection III. vol. 5144, pp. 707–717 (2003)

11. Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and perfor-
mance evaluation. IEEE transactions on pattern analysis and machine intelligence
20(8), 777–789 (1998)

12. Kurdthongmee, W.: A comparative study of the effectiveness of using popular
dnn object detection algorithms for pith detection in cross-sectional images of
parawood. Heliyon 6(2) (2020)

13. Kurdthongmee, W., Suwannarat, K., Panyuen, P., Sae-Ma, N.: A fast algorithm
to approximate the pith location of rubberwood timber from a normal camera
image. In: 15th International Joint Conference on Computer Science and Software
Engineering (JCSSE). pp. 1–6. IEEE (2018)

14. Longuetaud, F., Mothe, F., Kerautret, B., Krähenbühl, A., Hory, L., Leban, J.M.,
Debled-Rennesson, I.: Automatic knot detection and measurements from x-ray ct
images of wood: A review and validation of an improved algorithm on softwood
samples. Comput. Electron. Agric. 85, 77–89 (2012)

15. Longuetaud, F., Leban, J.M., Mothe, F., Kerrien, E., Berger, M.O.: Automatic
detection of pith on ct images of spruce logs. Computers and Electronics in Agri-
culture 44(2), 107–119 (2004)

16. Nezamabadi-Pour, H., Saryazdi, S., Rashedi, E.: Edge detection using ant algo-
rithms. Soft Computing 10(7), 623–628 (2006)

17. Nordmark, U.: Models of knots and log geometry of young pinus sylvestris sawlogs
extracted from computed tomographic images. Scandinavian journal of forest re-
search. 18(2), 168—175 (2003), https://doi.org/10.1080/02827580310003740

18. Norell, K.: Automatic counting of annual rings on Pinus sylvestris end faces in
sawmill industry. Computers and Electronics in Agriculture 75(2), 231–237 (Feb
2011)

19. Norell, K., Borgefors, G.: Estimation of pith position in untreated log ends in
sawmill environments. Computers and Electronics in Agriculture 63(2), 155 – 167
(2008)

20. Rune, G., Warensjo, M.: Basal sweep and compression wood in young scots pine
trees. Scandinavian journal of forest research. 17(6), 529—537 (2002), https://
doi.org/10.1080/02827580260417189

21. Schraml, R., Uhl, A.: Pith estimation on rough log end images using local fourier
spectrum analysis. In: Proceedings of the 14th Conference on Computer Graphics
and Imaging (CGIM’13), Innsbruck, AUT (2013)

22. Sobel, I., Feldman, G.: An isotropic 3x3 image gradient operator. In: History and
Definition of the so-called ”Sobel Operator” (1990)

23. Tian, J., Yu, W., Xie, S.: An ant colony optimization algorithm for image edge
detection. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence). pp. 751–756. IEEE (2008)

24. Wei, Q., Leblon, B., La Rocque, A.: On the use of x-ray computed tomography for
determining wood properties: a review. Canadian journal of forest research 41(11),
2120–2140 (2011)

85

Structure, Concept and Result Reproducibility
of the Benchmark on Vesselness Filters?

Jonas Lamy[0000−0002−0547−1341]1,
Bertrand Kerautret[0000−0001−8418−2558]1,

Odyssée Merveille[0000−0002−9918−3761]2, and
Nicolas Passat[0000−0002−0320−4581]3

1 Université Lyon 2, LIRIS (UMR 5205), Lyon, France
2 Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne,

CNRS, Inserm, CREATIS UMR 5220, France
3 Université de Reims Champagne Ardenne, CReSTIC, EA 3804, 51097 Reims,

France

Abstract. This paper focuses on the structure and the concept of the
framework used in the vesselness filters benchmark that was recently
introduced. Vesselness filters are used to detect the presence of vessels
in an image. There exists a wide variety of such filters and comparing
their respective strengths and weaknesses is a non-trivial task, especially
given the different contexts in which they are published. This benchmark
was designed to ease such comparison process whereas remaining easy to
customize. More specifically, this paper presents the benchmark structure
and architecture. It also shows how to integrate new vesselness filters
and/or new metrics in the benchmark with the requirements for future
comparisons and online demonstrations.

Keywords: Benchmark · Vesselness filtering · CT Images · Replicability

1 Introduction

Vessel enhancement is an important step of the vessel segmentation process.
Many vessel enhancement algorithms have been proposed over the last twenty
years. However, the enhancement step is often overlooked, and very few filters
are actually used in medical applications. Having a deeper look at these algo-
rithms, one quickly realizes that it is hard to evaluate and compare them by
relying on the associated literature. Indeed, most of them are tested on different
(often private) datasets, which blurs the meaning of the filter scores across dif-
ferent papers. Based on these considerations, we decided to design a benchmark
framework that allows for a comparison between vessel enhancement filters for
3D images.

In this paper, we first briefly recall the benchmark [7] (Section 2). Then, we
propose a detailed description of the benchmark conception with a focus on how

? This work was funded by the French Agence Nationale de la Recherche (R-Vessel-X,
grant ANR-18-CE45-0018).

86

2 Lamy et al.

to add new algorithms that fit the benchmark framework and how to add new
metrics (Section 3). We also describe how to reproduce the results obtained in [7]
(Section 4). Finally, an online demonstration is highlighted in Section 5 before
conclusion.

2 Overview of the Benchmark of Vesselness Filters

The different algorithms used in the benchmark [7] are summarized in Table 1.
The aim is to cover the main reference approaches starting from the pioneering
ones with Sato [13] and Frangi [4] that exploit the Hessian matrix in a scale space
analysis. These two approaches are able to take into account a certain amount of
noise level and can carry out reconnection between vessel parts. Based on Hes-
sian analysis, four more recent algorithms were considered in the benchmark:
(i) the Meijering approach initially designed for neurite detection [11]; (ii) OOF
which prevents response overflow from the scale space using a spherical frame-
work equivalent to the Hessian matrix [8]; (iii) Jerman, that uses a volume ratio
of tubular structures to better exploit the eigen values, producing a more consis-
tent response; and (iv) Zhang that improves Jerman solution with a specialized
preprocessing using a K-means classification combined with a sigmoid filter [14].
Finally, to cover other types of approaches, we integrated in the framework a
method based on morphological filters that uses path opening and path-based
structuring elements [12].

Method Base Main ideas Date

Sato et al. [13] Hessian Vessel reconnection, noise control 1997

Frangi et al. [4] Hessian Blobs and plates removal with noise control 1998

Meijering et al. [11] Hessian Neurite detection 2004

OOF [8] Hessian Analysis restricted by a sphere 2010

Jerman [5] Hessian Volume ratio of tubular structures 2016

Zhang [14] Hessian K-mean with sigmoid using Jerman base 2018

RORPO [12] Morphology Vote on path opening 2018

Table 1: List of the methods currently available in the benchmark framework
with their characteristics.

Main measures and metrics To evaluate the impact of the different algo-
rithms, the responses of the filters are segmented by thresholding and compared
with ground-truth. Then, the amounts of true positives, true negatives, false
positives and false negatives are computed to define other metrics. In particular,
we consider the Dice score that accounts for the overlap between the thresh-
olded volume and the ground-truth, and the Matthew’s Correlation Coefficients
(MCC). The latter one has a similar purpose but also takes into account the
true negatives, leveraging the metric for highly imbalanced datasets.

87

Structure and Concept of the Benchmark for Vesselness Filters 3

Evolutive structure As it will be described in the following sections, the pro-
posed framework is generic enough to handle different types of images and fil-
ters. It can also be used to integrate other algorithms. We benchmarked the
enhancement of liver vessels but any other kinds of structures and images can
be considered. The only parts that need to be swapped in that case are the mask
and reference images. The addition of new metrics is also possible in order to
focus on other types of quality features.

Open framework with online demonstration The source code of the bench-
mark is available on a GitHub repository:

https://github.com/JonasLamy/LiverVesselness

The main organization of the benchmark is described hereafter and a direct
access allows to test the different algorithms from an online demonstration that
allows to upload specific data:

https://kerautret.github.io/LiverVesselnessIPOLDemo

From this work, the aim is to gather existing and future new algorithms in
order to cover state of the art algorithms. In the sequel, we first show how to
replicate the results and apply each filter using different data.

3 Filter Design and Integration

Since vessel segmentation is generally the final target application, the benchmark
compares the thresholded output of a vesselness filter with a binary ground-
truth. For each threshold value, several metrics are computed and aggregated in
a CSV format. In medical applications, the area of interest is often an organ, for
instance the liver in a CT scan of the torso. Our benchmark thus supports the
use of masks to compute the metrics only in chosen/relevant areas.

The benchmark is implemented in C++ and the ITK library [6], which han-
dles multiple medical images formats such as nifti, mhd, dicom series, etc.

3.1 Design of base usage

A vessel enhancement filter is designed to highlight the vessels in a 3D volume.
This is often performed by improving the contrast of tubular structures whereas
removing or decreasing the signal of the other structures and the background.
In our benchmark framework, we wanted the filter implementations to be stan-
dalone programs so that they could be reused in other applications. Thus, a
candidate filter should satisfy the following rules for a proper inclusion into the
benchmark pool of vesselness filters:

– parameters should have --input for input option;
– parameters should have --output for output option;

88

4 Lamy et al.

(a) input image (b) Frangi output (c) ground truth image

Fig. 1: Illustration of the Frangi algorithm (Antiga implementation) (b) applied
in the masked liver (a), and compared to the ground-truth (c).

– a mask option --mask should be available where the filtered pixel values are
set to zero where mask is zero and unaltered otherwise. We recommend to
implement the masking as the final step of the filter, so that the masking
does not generate phantom structures with high responses;

– the output of the enhancement filter should be normalized between [0, 1];

– finally if dicom series are likely to be used, a --inputIsDicom option should
also be available.

The CodeList 1 illustrates a commande line example defined to apply the algo-
rihtm Antiga on a sample image of the Data directory that contains the Ircad
database (see links on the GitHub repository). The input sample, ground-truth
and results are visible on Figure 1.

./ Antiga --input ../../ data/3 Dircadb1 .10/ patientIso.nii --output antiga.nii
--mask ../../ data/3 Dircadb1 .10/ liverMaskIso.nii --sigmaMin 2.0 --sigmaMax
3.0. --nbSigmaSteps 3 --alpha 0.5 --beta 0.5 --gamma 5

Code List. 1: Command line example to apply Antiga algorithm (Fig. 1) from
the build directory.

Providing a mask or a region of interest greatly modifies the results of some
filters. For instance, Zhang filter uses a K-means-based enhancement specifically
designed for the hepatic vessels; then it performs very well on images of the liver
alone, but using a whole CT scan, it will shift the K-means intensity classes
resulting in poor results, see Figure 2.

89

Structure and Concept of the Benchmark for Vesselness Filters 5

(a) no mask (b) with mask

Fig. 2: Zhang filtering results using same parameters with (b) and without masks
(a). Color scale spreads from blue (low response) to yellow (high response).

{
"Antiga" :
[

{
"Output ":" antiga1.nii",
"Arguments ":[

{" sigmaMin ":"2.0"} ,
{" sigmaMax ":"2.5"} ,
{" nbSigmaSteps ":"3"} ,
{"alpha ":"0.7"} ,
{"beta ":"0.1"} ,
{"gamma ":"5"}
]

},
{

"Output ":" antiga2.nii",
"Arguments ":[

{" sigmaMin ":"2.6"} ,
{" sigmaMax ":"2.3"} ,
{" nbSigmaSteps ":"3"} ,
{"alpha ":"0.5"} ,
{"beta ":"0.5"} ,
{"gamma ":"5"}

]
},

],
"Meijering" :
{

"Output ":" meijering.nii",
"Arguments ":[

{"alpha ":"0.4"} ,
{" sigmaMin ":"1.6"} ,
{" sigmaMax ":"1.8"} ,
{" nbSigmaSteps ":"5"}

]
}

}

Code List. 2: Examples of two parameter sets defined to run several instances of
two different algorithms: two executions for the Antiga algorithm and another
for the Meijering algorithm.

90

6 Lamy et al.

3.2 Design of a parameter set

The effectiveness of a filter in an experiment often depends on its parameteriza-
tion. In our framework, each set of parameters is represented by a json object. An
example of file containing several sets of parameters is illustrated on CodeList 2.
A parameter object name should reflect the name of the vesselness filter program.
It has two attributes: “output” (i.e. the name of the output of the filter), and
“arguments” (a list of the filters arguments as they are defined in the program).
The output naming convention is left to the user’s choice.

Here are some naming conventions we used. If the parameter set file is a mix
of several filters, the name of the filter should be in the output volume naming
scheme. For instance, the output filenames defined in the three parameter sets
are prefixed with the algorithm name in CodeList 2. If the parameter set file is
composed of the same filter with several variants of parameters, then the values
of the moving parameters should be in the name for easier post-analysis.

The parameters are then used by the benchmark to call the corresponding
command line to run the enhancement filter, so that the first parameter set will
produce the following command line given in CodeList 3.

./ Antiga --input inputVolume.nii --output antiga1.nii --sigmaMin 2.0
--sigmaMax 3.0 --alpha 0.7 --beta 0.1 --gamma 5

Code List. 3: First command line generated from the parameter set file of
CodeList 2.

3.3 Database listing

The benchmark uses a database described by a listing text file. The listing file
format should follow this pattern: name of the image instance (a.k.a. volume
name / patient Id), path to the input volume, path to the binary ground-truth,
path to the mask volume (ROI). At least one mask is required, but any arbitrary
number of masks can be added.

3Dircadb1 .10 // Name
PathToFolder/patientIso.nii //input image
PathToFolder/vesselsIso.nii // groundtruth
PathToFolder/liverMaskIso.nii // first mask
PathToFolder/dilatedVesselsMaskIso.nii // second mask

Code List. 4: Example of database listing file.

CodeList 4 shows an example of database listing file. In this example, all
the filters and their associated parameters are applied to patientIso.nii and

91

Structure and Concept of the Benchmark for Vesselness Filters 7

compared to the ground-truth vesselsIso.nii. Metrics are computed in two
areas: the mask of the liver, and the mask formed by the dilated vessels. All the
associated resulting vesselness output volumes and csv files are stored in a folder
named 3Dircad1.10.

3.4 Benchmark parameters

Once the filter parameters and the database file are ready, the last step is to
configure the benchmark. Once again, we chose a json file so that the tracking
of carried out experiments is easier (see CodeList 5).

{
"Settings ":{

"name ":" MyBenchmark",
"path ":" PathToDirectory",
"inputVolumesList ":" fileLists/DatabaseFileList.txt",
"algorithmSets ":" paramSets/all_algorithms.json",
"maskList ":[" Organ","Vessels"],
"enhancementMask ":"",
"nbThresholds ":200,
"removeResultsVolumes ":false

}
}

Code List. 5: Benchmark parameters.

In addition to the location of the benchmark output directory and the loca-
tion of the required files, the benchmark includes several options. The first one
is the list of areas of interest MaskList where the metrics will be computed. The
number of masks in that list should match the number of masks added to the
database listing. The option enhancementMask allows the user to choose one of
the above ROIs as a mask for the enhancement filter (effects demonstrated on
Zhang filter on Figure 2 of Section 3.1). If the string is empty, then the metrics are
computed on the whole input image. The number of thresholds (nbThresholds)
allows to control the precision of the ROC curve. Finally, the benchmark is also
designed for low disk memory usage with the option removeResultsVolume.
If this option is set to true, only the resulting csv files will be kept and the
vesselness filter outputs are removed as soon as the metrics are computed.

3.5 Extra metrics

The addition of extra metrics requires to modify the C++ code. The benchmark
is composed of two classes: the Benchmark class which manages I/O and launches
the scripts according to the parameter files, and the Eval class that computes the
metrics for a given binary image and the associated ground-truth, or a confusion
matrix.

Adding a new metric is rather simple. It requires to implement it in the Eval
class and overload the << operator so that the results are included with the

92

8 Lamy et al.

rest of the metrics in the csv file. One should not forget to add the name of the
metric in the header of the csv in the benchmark.cpp file.

The metrics already available are:

– true positives, true negatives, false positives, false negatives;

– accuracy, sensitivity, precision, specificity;

– Dice, Matthew’s Correlation Coefficients (MCC).

3.6 Results analysis

Since the outputs of the benchmark are csv files, the post-analysis can be done
using tools such as pandas, matlab or any csv file reader. In the associated work
[7], we were interested in measuring the most efficient filters when it comes to
maximizing the mean MCC over the whole dataset. In other words, we aimed
to determine the filter and parameter set that led to the best results in average,
instead of seeking a per volume fine tuning.

4 Reproducibility of Benchmark Results

In this section, the focus is made on the reproducibility of the results presented
in [7]. The reproducibility term follows the ACM definition: “it consists of repro-
ducing the results from a different research team by using the same experimental
setup” [3]. For this purpose of reproducibility, the requirements and main steps
are presented in the following.

Requirements The dependencies to construct the benchmark programs are
the ITK library [10], the JsonCPP library (a C++ Json parser) [2] and the
cmake (3.10.2 [1]) build architecture. Note that to improve the reproducibility
success probability, a git submodule is integrated in the main repository to link
to external library. The post-analysis script requires python3 with matplotlib,
pandas and numpy. Note that a virtualenv based configuration is also provided
for this script analysis step.

Experiment process The experiments for the benchmark described in [7] follow
two main steps. These experiments are relatively complex and some manual
analyses are required. In particular, we chose to find optimal parameters with
a two steps strategy. First, using default intrinsic parameters, we searched the
best scale parameter set that maximizes the mean MCC over the whole dataset.
Once these optimal scale parameters were found, a second run was performed
to find the optimal intrinsic parameters. For instance, if we consider the Frangi
algorithm, it means looking first in a three dimensions scale space, and then in a
two dimensional intrinsic parameter space instead of handling a five dimensional
space as a whole.

93

Structure and Concept of the Benchmark for Vesselness Filters 9

Step 1: scale search. For a chosen method, the first step is carried out by launch-
ing a scale parameter search, which can be done for all samples of the databases
in one command line call (see CodeList 6). Approximately 24 hours of computa-
tion are required to process a full database such as Ircad. However, it is possible
to run several methods in parallel using a server with sufficient memory and
computational power. At the end of this step, three csv files per method are
produced, corresponding to each mask. Table 2 shows a sample of an aggregated
result of this first step.

// To do for each method of the benchmark
./ Benchmark -s scaleSearchIrcad <NameOfTheVesselnessFilter >.json

Code List. 6: Scale search command line.

Once the benchmark has been run for all the methods, a python script is in
charge of summarizing the results in a pdf file. It gathers all the csv files in a
folder and invokes generatePDF.sh. The produced pdf file will contain the top
parameter set for each filters, and the top seven parameter sets per filters for
each mask maximizing both MCC and Dice.

Table 2: Best scale parameter sets maximizing MCC.

Ircad - Whole liver Vascusynth - Whole volume
Method σmin σmax nb steps Best MCC σmin σmax nb steps Best MCC
Sato et al. [13] 1.4 2.4 4 0.269 ± 0.065 1.4 2.8 4 0.541 ± 0.044
Frangi et al. [4] 1.4 3.0 4 0.344 ± 0.061 1.4 2.8 4 0.543 ± 0.040
OOF [8] 0.6 2.8 4 0.191 ± 0.039 0.6 1.6 4 0.382 ± 0.038
Meijering et al. [11] 1.2 2.2 4 0.138 ± 0.038 1.4 2.8 4 0.356 ± 0.040
Jerman et al. [5] 1.4 2.4 4 0.282 ± 0.063 1.4 2.6 4 0.612 ± 0.039
Zhang et al. [14] 1.4 2.4 4 0.344 ± 0.106 1.4 3.0 4 0.432 ± 0.040
Method path size factor nb steps Best MCC path size factor nb steps Best MCC
RORPO et al. [12] 60 1.2 3 0.384 ± 0.077 10 1.6 4 0.311 ± 0.032

Step 2: intrinsic parameter search Once the scale search is done, we perform an
intrinsic parameter search with the fixed best scale parameters. The results are
summarized in Table 3.

Finally, the filtering results are shown in Table 4 and illustrated in Figures 3
and 4.

5 Online Demonstration for Simple Custom Experiments

The different algorithms of the benchmark are available in the online demonstra-
tion mentioned in Section 2. The user can choose to apply a particular algorithm
and change the default parameters in order to assess the behavior and stability of

94

10 Lamy et al.

Input (3DIrcadb1.2 mip) Sato filter Frangi filter

Meijering filter OOF filter Jerman filter

Zhang filter RORPO filter

Fig. 3: Results on the sample 3DIrcadb1.2 obtained for the parameter sets ob-
taining the best mean MCC.

95

Structure and Concept of the Benchmark for Vesselness Filters 11

Input (Vascusynth) Sato filter Frangi filter

OOF filter Jerman filter Meijering filter

Zhang filter RORPO Filter

Fig. 4: Results on sample data 11 of group 4 obtained with the parameter set
obtaining the best mean MCC.

96

12 Lamy et al.

Table 3: Best parameter sets maximizing MCC. Note that the RORPO and
Meijering methods are not mentioned here since they do not have intrinsic pa-
rameters.

Ircad - Whole liver Vascusynth - Whole volume

α β MCC α β MCC
Sato 0.3 1 0.275 ± 0.066 0.9 2.8 0.544 ± 0.043

α β MCC α β MCC
Frangi 0.6 0.4 0.356 ± 0.079 0.2 0.8 0.602 ± 0.042

σ (smoothing) MCC σ (smoothing) MCC
OOF 0.5 0.190 ± 0.041 0.5 0.343 ± 0.035

τ MCC τ MCC
Jerman 0.2 0.318 ± 0.081 0.8 0.612 ± 0.040

τ MCC τ MCC
Zhang 1.0 0.346 ± 0.106 0.6 0.478 ± 0.041

Table 4: Results sum up table.

Best MCC
Ircad - Liver mask Vascusynth - Whole volume

Sato 0.275 ± 0.066 0.544 ± 0.043
Frangi 0.356 ± 0.079 0.602± 0.042
Meijering 0.138 ± 0.038 0.356 ± 0.040
Jerman 0.318 ± 0.081 0.612 ± 0.040
Zhang 0.346 ± 0.106 0.478 ± 0.041
OOF 0.190 ± 0.041 0.343 ± 0.035
RORPO 0.384± 0.077 0.311 ± 0.032

the algorithm (see Figure 5 (a)). He/she can also choose to apply the filter on a
restricted area of interest around a particular organ by selecting predefined mask
images such as liver, vessel or bifurcation areas (see Figure 5 (a)). Moreover the
user interface offers the possibility to upload new volume data and to check the
response filter on any new images. In this case, the default mask images cannot
be applied, but the user can choose to use his/her own custom mask before the
image upload. Any kind of 3D volumetric images supported by ITK can be used
such as .vol, .nii, .mhd, or .mha and the maximal size is fixed to 50 MB.

The demonstration provides complementary feedback for the user through
the 3D display of the resulting response. The 3D viewer is the itk-vtk-viewer [9]
that provides a 3D volume display with the ground-truth (when available). With
this viewer, the user can focus on the areas of interest directly from the inter-
action with the online demonstration. Figure 6 illustrates the viewer embedded
in a web browser. Thanks to this advanced viewer, the result of any user upload
volume data can be displayed (Figure 6 (b)) and different display settings can

97

Structure and Concept of the Benchmark for Vesselness Filters 13

(a) (b)

Fig. 5: Illustration of the online demonstration interface. (a) Main interface allow-
ing to select and change the default parameters, including the intrinsic param-
eters and mask image (highlighted in blue). (b) Archive section of experiments
given from user uploaded images.

(a) (b) (c)

Fig. 6: Illustration of the 3D display obtained from the online demonstration. (a)
Result of a filter displayed with ground-truth (in light red). Experiments with
user’s data can also be carried out (b) and the viewer allows to set the contrast
display (c).

be adjusted such as the contrast and filter intensity scale (Figure 6 (c)), or the
type of display by using 2D cutting planes.

The website interface also provides archives of the uploaded user’s experi-
ments (Figure 5 (b)). The access to the user’s results is interesting to highlight
the domain of interest and to show the global weaknesses and strengths of a
particular algorithm. For now, the volumetric source images are stored on the
server but depending on the user’s upload usage, the result archive could be re-
stricted in the future to the image previews of experiments with the parameters
used.

Filter results embedding in other web pages The online structure of the
demonstrations allows the user to export the 3D view of the filter results in other
web pages by simply relyng on few lines of HTML code. A typical example is
illustrated on the following GitHub repository:

98

14 Lamy et al.

https://kerautret.github.io/EmbeddingLiverFilterResViewer

The main instructions needed to embed a filter result are described in the ex-
ample page. They consist of copying few lines of code and updating two links
(one for the filter result and one for the mesh reference). An overview of a result
view embedding is illustrated in Figure 7. This behavior is possible thanks to
itk-vtk-viewer and online demonstration archive coupled together. Such a feature
can be useful to illustrate the performance of filter results in various conditions
like in a research project web page and also for teaching activities.

(a) (b)

Fig. 7: Example of 3D result embedding in other web pages. (a) Interactive 3D
viewer embedded in a GitHub web page. (b) HTML container source code with
main steps to construct the given page.

Online demonstration repository source Following the purpose to integrate
other future reference methods, the source code on the online demonstration is
available in the following repository:

https://github.com/kerautret/LiverVesselnessIPOLDemo

The main idea is to invite authors to propose their new filter algorithms.
The integration in the online demonstration can be done in two main steps
(see Readme.md file of the above repository). The first step is to address the new
source code to the main benchmark repository. Then, the authors can request an
issue to integrate their new methods with the description of specific parameters
(or propose directly the demonstration template edition through a GitHub Pull
Request).

99

Structure and Concept of the Benchmark for Vesselness Filters 15

6 Conclusion

In this paper, the architecture of a fully reproducible benchmark experiment was
presented including benchmark set up, use of different masks and databases. We
also provided an online demonstration to perform quick tests and visualiza-
tion without any software installation. We also took special care to design the
benchmark so that the addition of new filters would be very easy both in the
benchmark structure and on the online demonstration. We highly encourage the
community to contribute to the algorithm pool through the different GitHub
repositories so that future state of the art algorithms could be compared with
existing literature.

References

1. Cmake, https://cmake.org, (accessed October 14, 2020)
2. jsoncpp, https://github.com/open-source-parsers/jsoncpp, (accessed October

14, 2020)
3. Artifact review and badging (2020), https://www.acm.org/publications/

policies/artifact-review-badging, Revised August 24, Accessed October 14
4. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel en-

hancement filtering. In: MICCAI. pp. 130–137 (1998)
5. Jerman, T., Pernus, F., Likar, B., Spiclin, Z.: Enhancement of vascular structures

in 3D and 2D angiographic images. IEEE Transactions on Medical Imaging 35,
2107–2118 (2016)

6. Johnson, H.J., McCormick, M., Ibáñez, L., Consortium, T.I.S.: The ITK Software
Guide. Kitware, Inc., 3rd edn. (2013), http://www.itk.org/ItkSoftwareGuide.
pdf

7. Lamy, J., Merveille, O., Kerautret, B., Passat, N., Vacavant, A.: Vesselness fil-
ters: A survey with benchmarks applied to liver imaging. In: International Confer-
ence on Pattern Recognition (ICPR) (2020), https://hal.archives-ouvertes.
fr/hal-02544493

8. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection
using optimally oriented flux. In: ECCV. pp. 368–382 (2008)

9. McCormick, M., Jourdain, S., Wittenburg, S., Smyth, D., Girault, A., Ouyang,
W., Bilkey, J., Kerautret, B.: Kitware/itk-vtk-viewer: v10.8.0 (Oct 2020), https:
//doi.org/10.5281/zenodo.4064952

10. McCormick, M.M., Liu, X., Ibanez, L., Jomier, J., Marion, C.: Itk: enabling repro-
ducible research and open science. Frontiers in Neuroinformatics 8, 13 (2014)

11. Meijering, E., Jacob, M., Sarria, J.C., Steiner, P., Hirling, H., Unser, M.: Neurite
tracing in fluorescence microscopy images using ridge filtering and graph searching:
Principles and validation. In: ISBI. pp. 1219–1222 (2004)

12. Merveille, O., Talbot, H., Najman, L., Passat, N.: Curvilinear structure analysis by
ranking the orientation responses of path operators. IEEE Transactions on Pattern
Analysis and Machine Intelligence 40, 304–317 (2018)

13. Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.:
3D multi-scale line filter for segmentation and visualization of curvilinear structures
in medical images. In: CVRMed-MRCAS. pp. 213–222 (1997)

14. Zhang, R., Zhou, Z., Wu, W., Lin, C.C., Tsui, P.H., Wu, S.: An improved fuzzy
connectedness method for automatic three-dimensional liver vessel segmentation
in CT images. Journal of Healthcare Engineering 2018, 1–18 (2018)

100

Creating Emotion Recognition Algorithms based on a

Convolutional Neural Network for Sentiment Analysis

 Vera Ivanyuk 1,2[0000-0001-6402-3832] and Ekaterina Tsapina 2

1 Financial University under the Government of the Russian Federation, Russia
2 Bauman Moscow state technical university, Moscow, Russia

ivaver6@gmail.com

Abstract. The objective of the research is the development and evaluation test-

ingof a speed-optimized «Dual-trained Lazy CNN» neural network model for

language-dependent sentiment analysis in Slavic languages in specific cultural

context, as well as the software implementation of the resulting network. Convo-

lutional neural networks are easy to train and implement. To train them, a stand-

ard error backpropagation algorithm is used, and because the filter weights are

evenly distributed the number of parameters in the convolutional neural network

is small. From the viewpoint of computational linguistics, convolutional neural

networks are a powerful tool for classification, that, however, does not have any

language intuition, which significantly complicates the analysis of algorithm er-

rors. However, it is convolutional networks that are widely used in text data anal-

ysis tasks. Neural networks always work with big data and often require a lot of

processing power. Therefore, to simplify computations, it makes sense to use

«lazy» NNs. A «lazy» neural network is a network, which, if it receives input

data that repeats the patterns that were previously processed by it, returns a result

that was obtained earlier.

Keywords: Emotion Recognition, Convolutional Neural Network, Sentiment

Analysis, Slavic languages, Russian language.

1 Introduction

In 1980, American psychologist Dr Robert Plutchik developed a concept in which he

established the distinction of 8 basic emotions [16]. The result of the work was the

«wheel of emotions» – visualization of the human emotional spectrum.

Intuitively, basic emotions can be divided into three groups: positive (joy, trust),

negative (anger, disgust, fear), and neutral (anticipation, surprise, and sadness).

Implementations of the emotion wheel include modern voice assistants: Alice (Yan-

dex), Siri (Apple), Google Assistant (Google), Alexa (Amazon Echo), Cortana (Mi-

crosoft), and Marusya (Mail.ru Group). In addition to various useful technical func-

tions, all of them can imitate emotions depending on the user’s mood.

101

2

The basis for creating emotion recognition algorithms was the work of Martin Porter

[17]. The most famous is his stemming algorithm, which allows identifying the seman-

tic basis of the entered words to further analyze their emotional connotation.

Stemming is the process of finding the stem for a given source word. The word stem

does not necessarily match the morphological root of the word. Porter’s stemmer is a

stemming algorithm published by Martin Porter in 1980. The original version of stem-

mer was intended for English and was written in BCPL. Martin later created the Snow-

ball project and, using the main idea of the algorithm, wrote stemmers for common

Slavic languages, including Russian [17].

The main idea behind the Porter stemmer is that there is a limited number of word-

formation suffixes, and the stemming occurs without using any stem bases: only a set

of existing suffixes and manually set rules.

The advantage of the Porter stemming algorithm is that it does not use any dictionar-

ies or databases, which increases processing speed and expands the range of applica-

tion.

The objective of the study is the development of a convolutional neural network

model for sentiment analysis. For preparing this paper, we used the methods and ap-

proaches described in the following works:

The authors Tripathi, Suraj, et al. [25] proposed a self-designed emotion recognition

model based on convolutional neural network. Tripathi, Suraj, et al. achieved an almost

7% increase in overall accuracy. Kant, Neel, et al. [8] analyzed tweets using an LSTM

model and suggested a formalized sentiment score for a tweet. Calefato, Fabio, et al.

[4] presented their own emotion recognition model based on binary classifiers to detect

six basic emotions. The authors Majumder, Navonil, et al. [13] conducted a compara-

tive analysis of the state-of-the-art emotion detection methods using convolutional neu-

ral networks. Ghosal, Deepanway, et al. [7] empirically showed that the performance

of the neural network directly depends on the quality of the dataset used. The authors

Lopez, Marc Moreno, and Jugal Kalita [12] suggested a neural network architecture for

emotion recognition. As the experiment showed, the proposed architecture was also

suitable for a limited Russian-language cultural context, which will be proved further

in the present paper. Perikos, Isidoros, and Ioannis Hatzilygeroudis [15] present an

emotion detection system used to automatically recognize emotions in text. Alswaidan,

Nourah, and Mohamed El Bachir Menai [2] detect emotions by analyzing the text with-

out using neural networks. Qadir, Ashequl, and Ellen Riloff [18] research general emo-

tional background of short messages on Twitter using convolutional neural networks.

They showed that the method they were using outperformed classical methods by 5 to

18 %. The authors Acheampong F. A. et al. [1] suggest applying correlation analysis to

emotion detection tasks and not using neural networks. The study by Kratzwald, Bern-

hard, et al. [10] shows that neural network ensembles perform much better than indi-

vidual methods. The authors Batbaatar, Erdenebileg, et al. [3] proposed a novel neural

network architecture, called SENN (Semantic-Emotion Neural Network) which can uti-

lize both semantic/syntactic and emotional information by adopting pre-trained word

representations.

102

3

2 Spectral, frequency-, and paradigm-based speech evaluation

Spectral analysis. Since a speech signal is a time-varying process, its spectral descrip-

tion is based on the concept of short-term analysis. To this end, the speech signal 𝑠(𝑡)

is divided into equal overlapping segments, called frames, within which the signal prop-

erties change little, so the signal can be considered quasi-stationary. Usually, the frame

duration is chosen to be 10-30 ms, and it is formed by multiplying the signal 𝑠(𝑡) by

the window 𝑤(𝑡 − 𝑛∆𝑇) where 𝑛 = 0,1,2 …– the frame number index, ∆𝑇 – the 5-10

ms interval between neighbouring frames, which provides the necessary level of detail

of the spectral description in time. Next, spectral analysis is performed for each frame,

resulting in a sequence of amplitude spectra 𝑆(𝑓, 𝑛), where 𝑓 – frequency, 𝑛 – frame

number. A sequence of spectra 𝑆(𝑓, 𝑛) representing the speech signal is typically called

a spectrogram of speech or visible speech. The found spectrum 𝑆(𝑓, 𝑛) differs from the

current spectrum 𝑆(𝑓, 𝑡) in that it represents the latter at discrete times 𝑛∆𝑇.

Usually, to obtain spectra 𝑆(𝑓, 𝑛) different modifications of the discrete Fourier

transform for spectral analysis with a linear frequency scale are used. In this case, the

spectrum is located at a number of discrete, equidistant frequencies. Recently, there has

been considerable interest in spectrum analyzers based on a bank of bandpass filters

that generally take into account the features of frequency analysis of sound in the audi-

tory system.

In the practice of spectral analysis of speech, a logarithmic intensity scale is often

used. Its application is justified by the fact that intensity coding in receptors obeys the

Weber-Fechner law, according to which the just noticeable difference ∆𝐼 in external

stimulus affecting the receptor is proportional to the initial stimulus 𝐼 i.e. ∆𝐼~∆𝛽𝐼

where ∆𝛽 – the increase in the receptor response. Hence 𝛽~𝑙𝑔𝐼, and therefore, the re-

ceptor response is proportional to the logarithm of the external stimulus.

In the following, we present a survey of papers showing practical implementation of

spectral analysis. In the study by Chauhan, Rahul, et al. [6] it is shown that the spectral

analysis of speech can be used to identify emotions that do not depend on the text. In

the paper by Xie, Baijun, et al. [26] the analysis of the general emotional background

of a song is conducted. The authors propose a system for classification of songs ranging

from depressing to positive using method for extracting novel spectral features based

on a sinusoidal model. The paper by Thiangtham, Chaidiaw, and Jakkree Srinonchat

[24] addresses the problem of speech analysis using FFT Spectrum Analysis.

Frequency analysis is one of the cryptanalysis methods based on the assumption

that there is a nontrivial statistical distribution of individual characters and their regular

sequences in both open and encrypted types of text, which, up to the replacement of

individual characters, will also be preserved in the encryption and decryption processes.

Frequency analysis assumes that the number of occurrences of the same character of

the alphabet in texts of sufficient length is the same in different texts written in the same

language. In the case of monoalphabetic encryption, if in a ciphertext area there is a

symbol with such a similar probability of occurrence, then it is realistic to assume that

it is this encrypted letter. The same reasoning applies to bigrams (sequences of two

letters) and trigrams in cases of polyalphabetic ciphers.

103

4

This type of analysis is based on the fact that the test consists of words, and those,

in turn, of letters. The number of different letters in each language is limited, so the

letters can be simply listed. The most important characteristics of such a text will be the

repeatability of letters, different digrams, trigrams and n-grams, the compatibility of

different letters with each other, the alternation of consonants/vowels and some others.

The idea is to calculate the occurrences possible m-grams (denoted by 𝑛𝑚) in open

text long enough for analysis (denoted by 𝑇 = 𝑡1, 𝑡2 … 𝑡𝑙) composed of letters of the

national alphabet (denoted by {𝑎1, 𝑎2, … . 𝑎𝑛} . In the process, successive m-grams of

text are viewed: 𝑡1𝑡2 … 𝑡𝑚, 𝑡2𝑡3 … . 𝑡𝑚+1, … , 𝑡𝑖−𝑚+1𝑡𝑙−𝑚+2. . . 𝑡𝑙.

If 𝐿(𝑎𝑖1𝑎𝑖2 … 𝑎𝑖𝑚) – the number of occurrences of the m-gram 𝑎𝑖1𝑎𝑖2 … 𝑎𝑖𝑚 in

the text 𝑇, and 𝐿 – the total number of m -grams analyzed, then it is possible to establish

experimentally that at sufficiently large L, frequencies 𝐿(𝑎𝑖1𝑎𝑖2 … 𝑎𝑖𝑚)/ 𝐿 for such

𝑚-grams will differ little from each other.

Because of this, the relative frequency is considered an approximation of the proba-

bility 𝑃(𝑎𝑖1𝑎𝑖2 … 𝑎𝑖𝑚) of occurrence of the given m-gram at a randomly selected posi-

tion in the text (this approach is used for statistical determination of probability).

The following contributions contain findings of practical implementation of the fre-

quency analysis. The paper by Canales, Lea et al. [5] demonstrates the efficiency of the

frequency text analysis in emotion detection. In the study by Kim, Evgeny, and Roman

Klinger [9] a comparative analysis of all emotion recognition methods is performed.

In the research by Shivhare, Shiv Naresh, and Saritha Khethawat [22] an algorithm

for emotion detection from text is proposed. The authors Sim, Kwee-Bo, et al. [23]

identify such emotions as happiness, anger, and surprise using the frequency analysis

of speech signal.

Latent semantic analysis (LSA). Latent semantic analysis (LSA) is a natural lan-

guage information processing method that analyzes the relationship between a library

of documents and the terms found in them and identifies the characteristic factors (con-

cepts) inherent in all documents and terms.

The method of latent semantic analysis is based on the principles of factor analysis,

in particular, the identification of latent relationships of the studied phenomena or ob-

jects. When classifying / clustering documents, this method is used to extract context-

sensitive values of lexical units using statistical processing of large text bodies.

LSA can be compared to a simple type of neural network consisting of three layers:

the first layer contains a set of words (terms), the second – a certain set of documents

corresponding to certain situations, and the third, hidden layer (middle layer) is a set of

nodes with different weight coefficients connecting the first and second layers.

As the input information, the LSA uses a term-document matrix describing the da-

taset used for training the system. The elements of this matrix typically contain weights

that take into account the frequency of use of each term in each document and the par-

ticipation of the term in all documents (tf-idf). The most common variant of LSA is

based on the matrix decomposition by singular values (SVD – Singular Value Decom-

position). Using SVD decomposition, any matrix is decomposed into a set of orthogo-

nal matrices, the linear combination of which is a fairly accurate approximation to the

original matrix.

104

5

Text convolution. Let us consider a sequence of words 𝑤1:𝑛 = 𝑤1, … . , 𝑤𝑛, each

with their corresponding 𝑑𝑒𝑚𝑏 -dimensional word embedding 𝐸[𝑤𝑖] = 𝑤𝑖. A one-di-

mensional convolution of width k is computed by shifting a sliding window of size k

along the sentence and applying the same «filter» to each window in the sequence,

where the filter is a dot product with a weight vector 𝑢, often followed by a nonlinear

activation function. We define the operator ⊕ (𝑤𝑖:𝑖+𝑘−1) as a concatenation of vectors

𝑤𝑖 , … . , 𝑤𝑖+𝑘−1. Concatenation (lat. concatenatio «chaining; coupling») is the operation

of glueing linear structure objects. Then the concatenated vector of the 𝑖 − 𝑡ℎ window

is 𝑥𝑖 = [𝑤𝑖; 𝑤𝑖+1; … ; 𝑤𝑖+𝑘−1], 𝑥𝑖 ∈ ℝ𝑘×𝑑𝑒𝑚𝑏.

The filter is then applied to each window- vector, which gives scalar values 𝑝𝑖:

 𝑝𝑖 = 𝑔(𝑥𝑖 ∙ 𝑢) (1)

 𝑥𝑖 =⊕ (𝑤𝑖:𝑖+𝑘−1) (2)

 𝑝𝑖 ∈ ℝ , 𝑥𝑖 ∈ ℝ𝑘×𝑑𝑒𝑚𝑏 , 𝑢 ∈ ℝ𝑘×𝑑𝑒𝑚𝑏

where 𝑔 is the nonlinear activation function.

It is common to use 𝑙 different filters 𝑢1, … , 𝑢𝑙 that can be assembled into a matrix

𝑈, and a bias vector 𝑔 is often added:

 𝑝𝑖 = 𝑔(𝑥𝑖 ∙ 𝑈 + 𝑏) (3)

 𝑝𝑖 ∈ 𝑅𝑙 , 𝑥𝑖 ∈ ℝ𝑘×𝑑𝑒𝑚𝑏

 𝑈 ∈ ℝ𝑘×𝑑𝑒𝑚𝑏×𝑙 , 𝑏 ∈ 𝑅𝑙 .

Each vector 𝑝𝑖 is a set of values that represent (or generalize) the 𝑖 − 𝑡ℎ window.

Ideally, each measurement captures an independent type of indicative information.

There are narrow and wide convolutions. In a sentence of length 𝑛 with a window

of size 𝑘, there are 𝑛 − 𝑘 + 1 positions to start a sequence, so we get 𝑛 − 𝑘 + 1 vectors

𝑝1:𝑛−𝑘+1. This is called a narrow convolution. An alternative is to supplement the sen-

tence with 𝑘 − 1 padding-words to each side, then we will get 𝑛 + 𝑘 + 1 vectors

𝑝1:𝑛+𝑘+1. This is called a wide convolution. The number of resulting vectors will be

denoted by the letter m.

3 Dataset selection and correction

Slavic languages have their own unique cultural and emotional context, which devel-

oped in the language paradigm of emotional socialism and accordingly distorted the

sentiment of not only idiomatic and synecdochic expressions but also individual words

and phrases. Thus, many words, phrases, synecdoches that have become traditional de-

spite the negative semantic charge have a positive emotional connotation and vice

versa.

For training and cross-validation of the network, we used the RuTweetCorp dataset

[https://study.mokoron.com/#download] compiled by Yuliya Rubtsova [19, 20, 21]

105

6

which in most cases is a reference for training and testing neural networks designed to

work with the Russian language.

This dataset actually contains a significant number of erroneous elements, such as

statements in Kazakh and Ukrainian, as well as a large number of context-sensitive

synecdoches and idioms. In order to improve the quality of the dataset, it was automat-

ically and manually corrected by excluding foreign-language phrases, context-depend-

ent idioms, and expressions with an undetectable emotional component. After the above

processing, only 18484 records out of 334836 were left.

The resulting dataset was divided into two equal parts intended for training the net-

work and its cross-validation (Table 1).

Table 1. Model training and cross-validation dataset.

Class label Number of training

objects

Number of validation

objects

0 (hate/disgust) 2288 2288

1 (sad) 2297 2297

2 (happy) 2283 2283

3 (fear/surprise) 2374 2374

4 Topology of the neural network output part

The neural network architecture uses filters with height ℎ = (2, 3, 4, 5), which are de-

signed for parallel processing of bigrams, trigrams, 4-grams, and 5-grams, respectively

(see Fig.1).

106

7

Fig. 1. Preliminary neural network topology.

 The neural network was complemented with 10 convolution layers for each filter

height, the activation function being ReLU.

w2v_model = Word2Vec.load('/content/drive/My Drive/Colab

Notebooks/W2V PSW/model.w2v')

DIM = w2v_model.vector_size

embedding_matrix = np.zeros((NUM, DIM))

for word, i in tokenizer.word_index.items():

 if i >= NUM:

 break

 if word in w2v_model.wv.vocab.keys():

 embedding_matrix[i] = w2v_model.wv[word]

from keras.layers import Input

from keras.layers.embeddings import Embedding

tweet_input = Input(shape=(SENTENCE_LENGTH,),

dtype='int32')

tweet_encoder = Embedding(NUM, DIM, in-

put_length=SENTENCE_LENGTH,

weights=[embedding_matrix], trainable=False)(tweet_input)

from keras import optimizers

from keras.layers import Dense, concatenate, Activation,

Dropout

from keras.models import Model

from keras.layers.convolutional import Conv1D

107

8

from keras.layers.pooling import GlobalMaxPooling1D

import tensorflow as tf

branches = []

x = Dropout(0.2)(tweet_encoder)

for size, filters_count in [(2, 10), (3, 10), (4, 10),

(5, 10)]:

 for i in range(filters_count):

 branch = Conv1D(filters=1, ker-

nel_size=size, padding='valid', activation='relu')(x)

 branch = GlobalMaxPooling1D()(branch)

 branches.append(branch)

x = concatenate(branches, axis=1)

After being processed by convolution layers, feature maps are fed into subsampling

layers for the 1 − 𝑚𝑎𝑥-pooling operation, extracting the most significant 𝑛-grams from

the text.

 branch = GlobalMaxPooling1D()(branch)

 branches.append(branch)

x = concatenate(branches, axis=1)

At the next stage, they are combined into a common feature vector (at the pooling

layer), which is fed into a hidden fully-connected layer with 30 neurons. At the last

stage, the final feature map is fed into the softmax output layer of the neural network.

Since neural networks are prone to overfitting, dropout regularization is added after

the embedding layer and before the hidden fully-connected layer with the vertex drop-

ping probability p=0.2.

x = Dropout(0.2)(x)

x = Dense(30, activation='relu')(x)

x = Dense(1)(x)

output = Dense(4, activation='softmax')(x)

adam = optimizers.Adam(lr=0.01)

#'sparse_categorical_accuracy', 'accuracy'

model = Model(inputs=[tweet_input], outputs=[output])

model.compile(loss='sparse_categorical_crossentropy', op-

timizer='adam', met-rics=['sparse_categorical_accuracy'])

model.summary()

from keras.callbacks import ModelCheckpoint

5 Learning outcomes

The study examined the neural network architecture shown in figure 2. Categorical

cross-entropy was used as the empirical risk function, and categorical accuracy was

used as the metric.

108

9

To build quality metrics for this model, we introduce the concept of an error matrix

(table 2). This is a way to divide objects into four categories depending on the combi-

nation of the true response and the algorithm response.

Table 2. Error matrix.

 𝑦 = 1 𝑦 = 0

𝑎(𝑥) = 1 True Positive (TP) False Positive (FP)

𝑎(𝑥) = 0 False Negative (FN) True Negative (TN)

From here we get two quality metrics: precision and recall:

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4)

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5)

Precision reflects what percentage of objects assigned to a particular class by the

classifier actually belong to that class. Recall shows the fraction of the total amount of

the class that was actually retrieved by the classifier. The key factor in choosing these

metrics is independence from the ratio of classes.

But keep in mind that the metrics described above are suitable for solving binary

problems, whereas the problem of sentiment analysis is based on a 4-state model, which

means that it is a multiclass problem.

In multiclass classification cases, metrics are usually reduced to binary form. There

are 2 approaches – micro- and macro-averaging.

Let the sample consist of k classes. In micro-averaging, characteristics are averaged

across all classes, and then the final two-class metric is calculated. For example, preci-

sion will be calculated using the formula:

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑎, 𝑋) =
𝑇𝑃̅̅ ̅̅

𝑇𝑃̅̅ ̅̅ +𝐹𝑃̅̅ ̅̅
 (6)

Where 𝑇𝑃̅̅ ̅̅ =
1

𝑘
∑ 𝑇𝑃𝑘

𝑖=1 , 𝐹𝑃̅̅ ̅̅ is calculated similarly.

In macro-averaging, the final metric for each class is calculated first, and then the

results are averaged across the classes. In this case, precision will look as follows:

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑎, 𝑋) =
1

𝑘
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑘
𝑖=1 (𝑎, 𝑋) (7)

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖(𝑎, 𝑋) =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
 (8)

The micro-averaging technique is less sensitive to the ratio of class sizes, as opposed

to macro-averaging.

Let us define the 𝑓1_𝑠𝑐𝑜𝑟𝑒 metric as the harmonic mean of precision and recall:

 𝑓1_𝑠𝑐𝑜𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (9)

109

10

The model was trained in two stages. At the first stage of training, we froze the

embedding layer which is a trained Word2Vec model. All other layers were trained for

15 epochs (17610000 back propagation cycles at 712844 unique words each epoch).

The results are shown in Table 3.

Table 3. Model training.

Class label Precision Recall f1-score

0 (hate/disgust) 0.9493 0.7448 0.8347

1 (sad) 0.7271 0.8167 0.7693

2 (happy) 0.6857 0.8765 0.7695

3 (fear/surprise) 0.9666 0.7936 0.8716

Achieved accuracy metric value as a result of the experiment: 0.8077.

At the second stage, the embedding layer was unfrozen, and the model was trained

for another 5 epochs. The results are shown in Table 4.

Table 4. Results.

Class label Precision Recall f1-score

0 (hate/disgust) 0.9781 0.7605 0.8557

1 (sad) 0.7682 0.8785 0.8197

2 (happy) 0.7379 0.8953 0.8090

3 (fear/surprise) 0.9647 0.8395 0.8977

As a result of the experiment, the final value of the accuracy metric reached 0.8434.

Indirect SOTA analysis. As shown above, standard measures such as precision and

F1 were used as the main criteria. Direct SOTA-analysis was not performed due to the

lack of data on the training results of other networks on the corrected dataset. The

studies presented in Table 4 indicate directly that they used RuTweetCorp in its original

version, which contains a large number of ambiguous and foreign-language expres-

sions, while most of the studies do not indicate which emotion classification was used.

Despite the above, the SOTA characteristic common to this type of research, such as

the accuracy of emotion detection, can be used as a comparative criterion for Russian-

specific neural networks and datasets (Table 5).

Table 5. Indirect SOTA analysis.

Language

specific

algorithm

SOTA

average

accuracy

Dataset Paper

M-BERT

BaseFiT

(Russian)

0.874
RuTweetCorp

(full version)

https://github.com/sisme

tanin/sentiment-analysis-

in-russian

Dual-trained

Lazy CNN
0.843

RuTweetCorp

(clean version)
-

110

11

nb-blinov

(Russian)
0.816 ROMIP-2012

https://arxiv.org/ftp/arxiv/p

apers/1808/1808.07851.pdf

[14]

Naive-Bayes +

Thesaurus

(Russian)

0.697
RuTweetCorp

(full version)

https://www.fruct.org/publi

cations/fruct23/files/Lag.p

df [11]

To test the network, a software was developed to «deconvolve» the neural network

and interpret the results. The algorithm is presented below (see Fig.2).

Fig. 2. Algorithm of the program.

from tensorflow.keras.models import load_model

from google.colab import files

from IPython.display import Image

from tensorflow.keras.preprocessing import image

import numpy as np

classes = ['anger / disgust', 'sadness', 'happiness',

'surprise / fear']

r=0

model = load_model('/content/drive/My Drive/Colab Note-

books/check4_6_2/cnn-trainable-05-0.84.hdf5')

leniv=0

model.summary()

===

import pandas as pd

import tensorflow as tf

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

111

12

n2 = ['text', 'sent']

data_leniv = pd.read_csv('/content/drive/My Drive/Colab

Notebooks/leniv.csv', sep=';',encoding = "cp1251", er-

ror_bad_lines=False, names=n2)

columns = ['text', 'sent']

df = pd.DataFrame(data_leniv, columns=columns)

phrase = 'I'm so glad it ended well'

phrase2=preprocess(phrase)

#print(phrase2)

kz=data_leniv[data_leniv.text == phrase2]

bul = any(df.text == phrase2)

if bul==True:

 a=int(kz.sent)

 leniv=1

if leniv ==0:

==================================

We also implemented the reputation system which has the following form:

• from -∞ to 0 – «hostile»;

• 0 – «neutral»;

• from 0 to +∞ – «friendly»;

Figure 3 shows an example of one communication session with the emotion recog-

nition algorithm. The initial reputation value is neutral.

Fig. 3. An example of communication with an emotion recognition algorithm that recognizes the

interlocutor’s mood.

112

13

6 Conclusion

In the paper, we set and solved the task of developing methods and software for sen-

timent analysis and construction of emotion recognition algorithm.

The method of sentiment analysis using a neural network showed good results when

actually testing the software. In the future, it will be possible to teach the network to

detect more emotions – trust, vigilance, etc.

The procedure for selecting data using root search allowed us to get high-quality

training datasets. Removing the modified stop word list during preprocessing allowed

in-creasing the accuracy of the algorithm.

Using the Word2Vec model as an embedding layer simplified the discretization of

word vectors and made it possible to create a large dictionary for the network.

In general, the method of text classification using a convolutional neural network

performed well and proved to be effective for multiclass classification.

Comparative SOTA analysis has shown that even with small but high-quality da-

tasets, one can achieve a fairly high level of emotion recognition in natural language.

References

1. Acheampong F. A., Wenyu C., Nunoo‐Mensah H. Text‐based emotion detection: Advances,

challenges, and opportunities //Engineering Reports– С. e12189 (2020).

2. Alswaidan, Nourah, and Mohamed El Bachir Menai. "A survey of state-of-the-art ap-

proaches for emotion recognition in text." Knowledge and Information Systems,1-51(2020).

3. Batbaatar, Erdenebileg, Meijing Li, and Keun Ho Ryu. "Semantic-emotion neural network

for emotion recognition from text." IEEE Access 7, 111866-111878(2019).

4. Calefato, Fabio, Filippo Lanubile, and Nicole Novielli. "EmoTxt: a toolkit for emotion

recognition from text." 2017 seventh international conference on Affective Computing and

Intelligent Interaction Workshops and Demos (ACIIW). IEEE (2017).

5. Canales, Lea, and Patricio Martínez-Barco. "Emotion detection from text: A survey." Pro-

ceedings of the Workshop on Natural Language Processing in the 5th Information Systems

Research Working Days, JISIC (2014).

6. Chauhan, Rahul, et al. "Text independent emotion recognition using spectral features." In-

ternational Conference on Contemporary Computing. Springer, Berlin, Heidelberg (2011).

7. Ghosal, Deepanway, et al. "Dialoguegcn: A graph convolutional neural network for emotion

recognition in conversation." arXiv preprint arXiv:1908.11540 (2019).

8. Kant, Neel, et al. "Practical text classification with large pretrained language models" arXiv

preprint arXiv:1812.01207 (2018).

9. Kim, Evgeny, and Roman Klinger. "A survey on sentiment and emotion analysis for com-

putational literary studies." arXiv preprint arXiv:1808.03137 (2018).

10. Kratzwald, Bernhard, et al. "Deep learning for affective computing: Text-based emotion

recognition in decision support." Decision Support Systems 115, 24-35 (2018).

11. Lagutina, Ksenia, et al. "Sentiment classification of russian texts using automatically gener-

ated thesaurus." 2018 23rd Conference of Open Innovations Association (FRUCT). IEEE

(2018).

113

14

12. Lopez, Marc Moreno, and Jugal Kalita "Deep Learning applied to NLP." arXiv preprint

arXiv:1703.03091 (2017).

13. Majumder, Navonil, et al. "Dialoguernn: An attentive rnn for emotion detection in conver-

sations." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, (2019).

14. Panchenko, Alexander. "Sentiment index of the Russian speaking Facebook." arXiv preprint

arXiv:1808.07851 (2018)

15. Perikos, Isidoros, and Ioannis Hatzilygeroudis "Recognizing emotion presence in natural

language sentences." International conference on engineering applications of neural net-

works. Springer, Berlin, Heidelberg (2013).

16. Plutchik, Robert, and Henry Kellerman, eds. Theories of emotion. Vol. 1. Academic Press,

(2013).

17. Porter, Martin F. "Snowball: A language for stemming algorithms." (2001).

18. Qadir, Ashequl, and Ellen Riloff "Learning emotion indicators from tweets: Hashtags,

hashtag patterns, and phrases." Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing EMNLP (2014).

19. Rubtsova, Y. V. "A method for development and analysis of short text corpus for the review

classification task." Trudy XV Vserossiiskoy naychnoy konferencii RCDL’2013, 269-275

(2013).

20. Rubtsova, Yuliya. "Reducing the Degradation of Sentiment Analysis for Text Collections

Spread over a Period of Time." International Conference on Knowledge Engineering and

the Semantic Web. Springer, Cham, (2017).

21. Rubtsova, Yuliya. "Reducing the deterioration of sentiment analysis results due to the time

impact." Information 9.8 184, (2018).

22. Shivhare, Shiv Naresh, and Saritha Khethawat. "Emotion detection from text." arXiv pre-

print arXiv:1205.4944 (2012)

23. Sim, Kwee-Bo, et al. "Emotion Recognition Based on Frequency Analysis of Speech Sig-

nal." Int. J. Fuzzy Logic and Intelligent Systems 2.2, 122-126 (2002).

24. Thiangtham, Chaidiaw, and Jakkree Srinonchat. "Speech Emotion Feature Extraction using

FFT Spectrum Analysis." Applied Mechanics and Materials. Vol. 781. Trans Tech Publica-

tions Ltd (2015).

25. Tripathi, Suraj, et al. "Deep learning based emotion recognition system using speech features

and transcriptions." arXiv preprint arXiv:1906.05681 (2019).

26. Xie, Baijun, Jonathan C. Kim, and Chung Hyuk Park. "Musical emotion recognition with

spectral feature extraction based on a sinusoidal model with model-based and deep-learning

approaches." Applied Sciences 10.3, 902 (2020).

114

Tree Defect Segmentation using
Geometric Features and CNN?

Florian Delconte1, Phuc Ngo1, Isabelle Debled-Rennesson1, Bertrand
Kerautret2, Van-Tho Nguyen3, and Thiery Constant4

florian.delconte@loria.fr

1 Université de Lorraine, LORIA, ADAGIo, F-54000 Nancy, France
2 Université Lumière Lyon 2, LIRIS, Imagine, F-69365 Lyon, France

3 Department of Applied Geomatics, Centre d’applications et de recherche en
télédétection, Université de Sherbrooke, 2500 boul.de l’université, J1K2R1

Sherbrooke, QC, Canada
4 Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France

Abstract. Estimating the quality of standing trees or roundwood af-
ter felling is a crucial step in forest production trading. The on-going
revolution in the forest sector resulting from the use of 3D sensors can
also contribute to this step. Among them the terrestrial lidar scanning
is a reference descriptive method offering the possibility to segment de-
fects. In this paper, we propose a new reproducible method allowing to
automatically segment the defects. It is based on the construction of a
relief map inspired from a previous strategy and combining with a con-
volutional neural network to improve the resulting segmentation quality.
The proposed method outperforms the previous results and the source
code is publicly available with an online demonstration allowing to test
the defect detection without any software installation.

Keywords: Wood surface defects, Defect segmentation, Relief map, LIDAR,
Centerline, U-Net

1 Introduction

In the domain of biological image processing, the wood structures are often ex-
ploited to address various objectives, for instance, species identification [2], wood
quality estimation [7], tree microhabitats identification [21], tracability [23], or
plant growing analysis [6]. These various applications rely on different image
acquisition modalities such as classical 2D bitmap images (including hyperspec-
tral images), 3D point cloud (from multi-view stereo 3D or LiDAR scan) or 3D
volumetric images (medical X-Ray CT scanner [14] or ultra sound [5]).

The aim of this work is to detect defects located on the trunk surface of
living tree (see teasing Figure 1). Various types of defects are identified by biology

? This research was made possible by support from the French National Research
Agency, in the framework of the project WoodSeer, ANR-19-CE10-011.

115

2 F. Delconte et al.

(a) Input point cloud (b) Input mesh (c) Relief map (d) U-Net result
(e) Detection
& comparison

Fig. 1: Overview of the proposed method: input LiDAR 3d points (a) and its
reconstructed mesh (b) are used to construct the relief map (c) which is exploited
in U-Net (d). The defects are segmented and compared to ground truth (e).

experts (also called singularity) depending on their origins and their development
stages (burls, branch scar, picot, . . .). Figure 2 illustrates samples of defects
on beech and oak species. The detection of such a structure is a key point
for the value determination and the optimization of the transformation taking
knotiness or aesthetics into consideration. The defect detection on living tree is
not an easy task in the image processing domains, since each type of singularities
presents numerous geometric variations both inter or intra species. Figure 2 (a,b)
illustrates a same defect type on a same species but presenting a very different
geometric shape.

(a) Branch scar (beech) (b) Branch scar (beech) (c) Picot (oak)

Fig. 2: Examples of defects: scar and picot. Defect areas are highlighted in red.

In this work, the defect detection is addressed by using 3D scan of trunk (as
illustrated in Figure 1). Schütt et al. can be considered as the pioneers to exploit
the terrestrial LiDAR data for tree defect detection [24]. The authors proposed
to localise singularity by combining 3D terrestrial LiDAR with 2D images. After
using a cylindrical coordinate transformation, a neural network is trained and
used to extract the singularity areas. The method was promising, however the
extraction process needs a potential interactive correction and no details are
given to reproduce the method nor the result quality measures. Thomas et al.
proposed later an automatic method to detect severe surface defects by using a

116

Tree Defect Segmentation using Geometric Features and CNN 3

2D circle fitting algorithm [27]. The method was then improved with a parallel
implementation in order to reduce execution time [28]. One of the limitation of
such an approach, was the minimum detectable defect size was 12.7 centimeters
and with a relief higher than 1.27 centimeters. Answering to the previous limi-
tation, Kretschmer et al. [13] added more geometry in the singularity detection
by using a cylinder fitting based approach. Using a tree reconstruction method
[19], a series of cylinders is fitted according to the wood main axis and each 3D
points is associated to its cylinder part. Such an association allows to generate a
distance map that is used to extract manually the defects. The proposed strat-
egy is not automatic, however it allows to detect smaller defects with near 4.3
centimeters for the minimal size and 2 centimeters for the relief height. Observ-
ing that the wood trunk does not always fit perfectly a cylinder, Nguyen et al.
[18] proposed an automatic patch based method that allows to better follow
the trunk geometry. The main algorithm relies on the recovering of the trunk
centerline [10] allowing to avoid the cylinder fitting step of previous works.

The methods described in the previous part are designed specifically for the
wood defect estimation but it could be interesting to mention other general
approaches that are exploited for surface-crack detection in an industrial context.
For instance, Tabernik et al. [25] proposed a segmentation-based deep-learning
method to detect surface anomaly. Even if the considered images differ from
the tree defect context, their strategy could be interesting to adapt since the
proposed architecture does not request training with numerous images. In other
context of the train industry, the defect on rail surface were analysed through [4].
Like the previous works, their approach was based on the deep learning and can
detect various defects like weld, squat or joint. Finally, we can refer to another
application of micro cup surface inspection from a confocal laser microscopy
images that exploits neural network to detect defects on very textured images
[30].

Following the previous strategy introduced by Nguyen et al. [18], we propose
a new method based on the construction of a new relief map image combined
with a convolutional neural network (CNN) to precisely segment tree defects.
The main overview of the method is given on the Figure 3. The relief map is
constructed from the input mesh (upper part of Figure 3) and the convolutional
neural network is exploited to segment defect area (lower part of Figure 3)
that can be visualized on the original input mesh.The first step of the new
approach is described in the following section (Section 2) with the overview of
the centerline detection, followed by relief map image construction. Associated
to this representation, the segmentation process based on the U-Net architecture
is introduced in Section 3. The experiment part presenting the main results and
reproducibility links are addressed in Section 4 before concluding.

2 Geometric tools

The proposed method relies on three geometric tools: (i) the centerline of the
wood log, (ii) the reference and delta distances and (iii) the relief map. The first

117

4 F. Delconte et al.

Fig. 3: Pipeline of the proposed method.

two tools are introduced in [10,18] and summarized in following sections. The
third tool, the relief map, is defined in Section 2.3. It permits to represent the
input 3D points with a 2D map characterising the relief of the points, relatively
to the centerline of the wood log and from a fitted tangent plane.

2.1 Centerline of the wood log

In [10] a method is presented to extract the centerline of 3D shapes using solely
partial mesh scans of the shapes. The centerline is a polyline with several small
segments (see Figure 4 (b,c)). It is obtained by constructing an accumulation
map from input faces and normal vectors (see Figure 4 (a)) and by filtering it
with a confidence vote. Since the method inputs are only a set of faces, the cen-
terline can also be recovered both from full and partial mesh (see Figure 4 (b,c)).
The details of the algorithm are available in the associated reference [11] and on
the GitHub repository:

https://github.com/kerautret/CDCVAM

Due to the non constant diameter of wood logs, a process of optimization
must be done to obtain a smooth centerline of the wood logs. In [18], the authors
used a smoothing process based on cubic spline. Note that the implementation
details and reproductive evaluation can be found in the complementary work
[17] with the GitHub repository:

https://github.com/vanthonguyen/treelogdefectsegmentation

118

Tree Defect Segmentation using Geometric Features and CNN 5

(a) Centerline (in red)

(b) Branches are highlighted in green

(c) The rest of the branches and smaller defects were detected by the patch based method

Figure 5: Segmentation results of the proposed method on an European beech, which has a curve trunk
and many branches.

10

fS

(a) accumulation (c) centerline result (red) on full mesh

(a) Centerline (in red

(b) Branches are highlighted in green

(b) The rest of the branches and smaller defects were detected by the patch based method

Figure 6: Segmentation results of the proposed method on a partial trunk of an oak.

 160

 180

 200

 220

 240

 260

 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500

 D

ist
an

ce
 t

o
th

e
ce

nt
er

lin
e

(m
m

)

z (mm)

 patch points
rmse

 160

 180

 200

 220

 240

 260

 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500

 D

ist
an

ce
 t

o
th

e
ce

nt
er

lin
e

(m
m

)

z (mm)

 patch points
rmse

(a) With all points of the patch (b) With a subsample of the patch

Figure 7: Line fitting to the profile of the distances to the centerline of a patch.

3.3. Segmentation of defects on the mesh of partial trunk
Thanks to the ability to compute the centerline even in the mesh built from only one

scan of the trunk. As shown in Figure 8, the performance of the segmentation algorithm
on these meshes was not far from the mesh of the entire trunk, which was scanned from
4 di�erent points of view. The weak point when using just one scan is that the spatial
resolution of the border of such a scan is lower than in the center area and there are
more borders leading to fewer points in the corresponding cylindrical sectors. Thus, the
information about the defects was less precise compared to 4 scans (see Figure 8 (a) and
(b) for example). The Table 1 also reflect this finding as the precision is very high (0.910)
while the recall is lower (0.659). The multiscan can also benefit from the reduction of
occlusions (Figure 8 (g) and (h)). While in the one scan mesh, there are several large
missing zones, on the 4 scans mesh, these zones are compensated by points from other

11

fl

(b) tracking step (d) centerline result (red) on partial mesh

Fig. 4: Illustration of the main idea of the centerline extraction algorithm: (a)
accumulation step from surface faces fk and fj in the direction of their normal
vectors (−→nj and −→nk); (b) example of tracking step from the 3D accumulation
values. Images (c) and (d) show the centerline extraction respectively on full
and partial mesh.

2.2 Reference and delta distances

In order to easily access the neighborhood of each point on the wood log surface,
we work in cylindrical coordinates. A local coordinate system (Ci, ui, vi, wi) is
defined for each segment Si of the centerline. A point P (x, y, z) in Cartesian
coordinates corresponds to the cylindrical coordinates (rP , θP , zP) with:

– rP is the distance between P and P ′, the projection of P on the segment Si

of the centerline.
– zP is the height of P along the centerline.
– θP is the angle formed between the segment PP ′ and the axis vi of local

coordinate system associated to Si.

For more details of transformation in cylindrical coordinate, we refer the readers
to [18]. To correctly detect the local relief variation around each point P of
the wood log, a rectangular neighborhood is studied, named patch PP , it is
proportional to the size and circumference of the wood log (see Figure 5 (a)
and [18] for details). PP characterizes the shape of the log around the point P .
The central straight line fitting the points of PP is calculated by a RANSAC
based linear regression. The reference distance of the point P , r̂P , is the
distance from this straight line to the centerline (see Figure 5 (b)). The difference
between rP and r̂P represents the relief of the tree at a point. It is called the

119

6 F. Delconte et al.

0

20

40

60

80

100

200 220 240 260 280 300 320

δ

r

processing point

z (mm)

points in the patch
fitted line

di
st

an
ce

 t
o

th
e

ce
nt

er
 li

ne
 (

m
m

)

PP

P Pr
^

(a) Rectangular patch PP centered on P (b) Delta distance

Fig. 5: (a) A patch in blue, associated to the red point, is used to compute the
reference distance of this point. (b) Computation of the reference distance for
the red point. See [18] for more details.

delta distance : δP = rP − r̂P (see Figure 5 (b)). We use the delta distance in
the next section to generate the relief maps.

2.3 Relief map

A relief map is a 2D representation of the tree mesh. It is obtained by firstly
discretizing the cylindrical point space and by secondly, completing the missing
information with a multi-resolution analysis. This map is used to segment the
defects. It must also allow a reverse operation, i.e., compute from pixels of the
map the corresponding 3D points of the mesh.

Cylindrical space discretisation The relief map represents the unfolding of
the wood log. The width of the map is the circumference of the trunk, i.e., 2π∗rm
with rm the average radius of the trunk. The height of the map is the height
of the trunk, obtained by subtracting the z component of the point having the
maximum height and the one of minimum height. Each point of the tree mesh
is associated to a cell of the relief map. We then calculate a value to represent
all the points of a cell. The chosen value is the maximum value of the delta
distances of the points associated to the cell. An illustration is given in Figure 6.
The two maps are generated from the same input mesh. On the left, intensity of
the pixels is calculated from the distance to the centerline. On the right, intensity
of the pixels is calculated from the delta distances. With the map obtained by
the distance to the centerline, we can observe the artefacts, the yellow and red
traces, due to the non-cylindrical tree, while using the delta distance, these
traces disappear and the defects become more visible. Figure 7, on the first line,
provides several relief maps deduced from this process.

120

Tree Defect Segmentation using Geometric Features and CNN 7

(a) Distances to the centerline (b) Relief map

Fig. 6: Difference between the distance map (a) and the relief map (b).

Fig. 7: Examples of relief maps. Red color for the stronger reliefs. Blue color for
the lower reliefs. The upper row is not improved with a multi-resolution analysis.

Multi-resolution analysis It is possible that some cells of the relief map do
not contain a value because no point is associated with it. To handle this, we
propose a multi-resolution analysis to improve the obtained relief map. In the
proposed process, for every empty cell, we reduce the resolutions by a factor 1

2n ,
with n ∈ N, until the cell contains at least one point. It should be noticed that if
n is too high, we may lost information of delta distance for the defect detection.
Therefore, during the multi-resolution analysis, we fix the limite of n to four.
Figure 8 illustrates the multi-resolution analysis to obtain a value in an empty

121

8 F. Delconte et al.

cell. We consider in this example an array T with a resolution of 10× 10. Some
cells contain black dots, corresponding to the points previously discretized. In
others, there is none, like the cell located in (2, 2). The multi-resolution analysis
is illustrated by the colors of the borders of the table. Respectively, the black,
red and blue borders correspond to resolutions reduced by a factor of 1

1 , 1
21 , 1

22 .
We look for the information in the cell (2, 2), then (1, 1) of the red discretiza-
tion, then (0, 0) of the blue discretization, etc ... The value in the (2, 2) cell is
then the maximum of the delta distances of the points in the (0, 0) cell of the
blue discretization. To represent the discretization in the form of an image we
associate a gray intensity to the delta distance. This intensity is distributed on a
fixed scale: 1cm equals ten gray levels starting from -5. The colored relief maps
in this article are obtained by applying a color scheme from blue to red. The bot-
tom row in Figure 7 shows the improvement brought to the relief maps with the
multi-resolution analysis. We can see in Figure 9, results of the multi-resolution
analysis centered on a branch scar type defect.

3 Segmentation with U-Net architecture

Hereafter, we process the detection of defects on tree barks using the previously
obtained relief map. Note that the 3D problem of defect detection on tree bark
surfaces becomes a 2D problem of relief map segmentation. More precisely, it is a
binary-image-classification in which each pixel of the relief map will be classified
as defect or not. We can observe in Figure 7, that the defects on tree barks may
have arbitrary size, shape and orientation. Furthermore, the roughness of the
tree bark, the variability of the defects on the same species and between the
different species make the detection task difficult to automate by conventional
segmentation algorithms.

Over the past few years, the deep-learning methods are becoming common
and successful for the segmentation task with remarkable performance improve-
ments. Indeed, they often achieve the highest accuracy rates on popular seg-
mentation benchmarks comparing to the classical computer-vision approaches.
Furthermore, the deep-learning algorithms can be adapted to different problems
as they can learn the hidden high-level features from the image directly, and
have capacity to represent and recognize the complex structures.

In this paper, we use a deep learning-based segmentation method, namely
U-Net [22], to detect tree bark defects with the relief maps as input. It should
be mentioned that in the context of surface-singularity detection, several neural
network architectures have been proposed (see Section 1). As stated in [22], U-
Net enables the model to be trained using a small number of samples, and to
create a precise pixel-wise mask of interest objects in the images. Thus, it is
a well-suited architecture for our segmentation problem. In the following, we
describe a modified version of the original U-Net [22] for detecting tree bark
defects, and the generation of training data from the relief maps.

122

Tree Defect Segmentation using Geometric Features and CNN 9

Fig. 8: Illustration of the multi-resolution analysis on an example of size 10×10.
Ajouter description

Fig. 9: Effect of multi-resolution analysis. Left: Without multi-resolution process-
ing, we can see the missing pixels. Right: A relief map completed with multi-
resolution analysis.

3.1 Segmentation network

The U-Net was first introduced in [22] as a fully convolutional network (FCN)
architecture for biomedical image segmentation, and it was designed for a precise
pixel-wise segmentation. Recently, many variants of U-Net architecture have
been proposed to address the segmentation of medical images, satellite images
such as U-Net++ [31], KU-Net [29], TernausNet [8], . . . U-Net is well-known for
its performance to be trained with very few training images.

U-Net is an auto-encoder architecture. The encoder stage takes the input
images and extracts features from objects in the image, then condenses them into
smaller layers. These features are propagated in the decoder stage to produce a
segmentation.

The original U-Net proposes to use convolution layers followed by max pool-
ing for down-sampling in encoding part, while the decoding part consists of

123

10 F. Delconte et al.

Fig. 10: The architecture for tree bark defect detection based on U-Net [22].

up-sampling followed by concatenation with the corresponding layer of the en-
coding part. Each layer is followed by the rectify linear unit (ReLu) activation
function, except the last one. This final layer is a 1x1 convolution followed by a
pixel-wise soft-max over the final feature map. The cross entropy loss function
is used to update weights of the network. The soft-max function redistributes
the weights of the final layer of the network in the interval of [0, 1] modeling a
probability distribution over predicted output classes. In total the network has
23 convolutional layers. More details of U-Net can be found in [22].

In this paper, to address our problem of detecting tree bark defects which
is defined as two class segmentation, we made several changes to the original
U-Net. In order to reduce the over-fitting of the considered neural network, we
apply a regularization technique, called drop-out. More precisely, we add two
dropout layers in the encoder and decoder, with probability 0.5, to randomly
drop some of the connections between layers. In addition, due to the dying ReLU
problem [16] –i.e., the ReLU neurons become inactive and only output 0 for any
input– the Leaky ReLu activation function is employed instead of ReLU from
the original architecture. Finally, in the last layer, we use a Sigmoid activation
function instead of soft-max function to ensure the output pixel values range
between 0 and 1. For the training, we use input image of size 320x320 pixels.
The proposed network architecture is illustrated in Figure 10.

3.2 Training data

The training dataset for U-Net framework is built from the relief maps gener-
ated from tree bark surfaces by the process described in Section 2. It should

124

Tree Defect Segmentation using Geometric Features and CNN 11

Extract patch based
on barycenter of the
considered defect

Extract patch
without defect

patch without defect

patch with defect

Fig. 11: Illustration of extracting patches of size 320x320 pixels from the relief
and the annotated maps.

be mentioned that we only have 25 annotated meshes –i.e., 25 relief maps with
ground-truths– of tree bark surfaces for the learning process (for more details,
see Section 4.1). Due to this limited number of samples, two strategies have been
adopted to augment the existing data while keeping the significant characteristics
of learning objects which are tree bark defects. First and foremost, we split each
relief map into patches of same size. For this, we carry out two types of cutting
(see Figure 11). The first one aims to obtain samples centered on defects. More
precisely, we perform the splitting of relief map according to the barycenter of
the connected component associated to the defect in the annotated image. Note
that if a defect is close to the border, a translation is applied to obtain a patch
containing the defect and being included in the map. The second one collects
samples that do not contain any defect so that the network can learn tree bark
without defect. Some samples of extracted patches with and without defects are
given in Figure 12. It should be mentioned that the size of the generated patches
is limited by the width and height of our relief maps. As observed in Figure 7,
the relief maps may have different sizes because of the discretization being made
with respect to the circumference and height of the tree bark (see Section 2).
For our framework, the patches are of size 320x320 pixels which is the largest
size that could be extracted from the relief maps. The obtained images are then
randomly separated into two subsets with a ratio of 7:3 for the training and
validation of the network.

After this splitting process, different transformation techniques have also
been used on the obtained patches for data augmentation. In particular, we
consider the operations: rotation, vertical and horizontal flip, zoom and deletion
of rectangular area randomly [3]. Note that this data augmentation is performed
on the fly, i.e., during the training time.

125

12 F. Delconte et al.

(a) Extracted patches with defects from relief maps

(b) Extracted patches with defects from annotated maps

(c) Extracted patches without defect from relief maps

Fig. 12: Some samples from training data.

4 Experiments

4.1 Dataset

We have two datasets for our experiments: INRAE1a and INRAE1b. IN-
RAE1a contains 10 trunks of different species: beech (1), birch (1), elm (1), fir
(2), red oak (2), wild cherry (2) and service wood (1). INRAE1b contains 15
meshes including alder (4), aspen (4), beech (1), birch (2), horn beam (1), lime
(1), red oak (2). The first dataset was used in [18], experiments were carried out
on INRAE1a to compare performance and robustness of our method with [13]
and [18] on different tree species. The relief maps of INRAE1a are given in Fig-
ure 14. The second dataset is used for the training and illustrated in Figure 13.

Both datasets have the ground-truths being made by hand-labeling defects.
The ground-truth is given as a set of point indices associated to the defect. These
indices are then used to generate the annotated maps for training the network.

4.2 Network training

The training process was first performed on the relief maps generated from 15
meshes of INRAE1b. We used the parameters recommended in [17] for computing
these maps. After splitting the obtained relief maps into patches (see Section 3.2),
we divide the patches of each map into two subsets: 70% for training and 30% for
validation. This subdivision allows to have the same bark variability on training
and validation. To summarize, the whole dataset has 265 images of size 320x320
pixels, it is partitioned into 204 images for training and 61 images for validation.

The training process is done on GPU (geforce RTX 2080Ti with 12Go RAM).
The modified U-Net is implemented using Tensorflow 2.2 [26] and Keras [9]. Dur-
ing the training, data augmentation was applied randomly to the input images,

126

Tree Defect Segmentation using Geometric Features and CNN 13

WildServiceTree Alder1 Alder2 Alder3 Alder4 Birch2 Birch Birch4

Hornbeam4 Red oak2 Redoak3 Redoak4 Redoak1 Beech Beech3 Linden

Fig. 13: Illustration of input 3D points of the mixed test.

including rotation, vertical and horizontal flip, zoom and deletion of rectangu-
lar area randomly [3]. We used the Adam optimiser [12], and set the learning
rate at 0.0001, the two parameters β1 = 0.9 and β2 = 0.99 (default values in
Tensorflow 2.2). We trained our network for 40 epochs, each epoch comprised
63 steps with 10 images per batch. About the parameters of dropout rate δ and
Leaky ReLu activation α, several values have been tested, and we come out with
δ = 0.5 and α = 0.01 for the smallest loss function (binary cross entropy) on
the validation. It should be mentioned that our training is quite fast, it takes
about 14 seconds per epoch. In other words, the proposed architecture allows
a high-quality segmentation and very fast training –about 10 minutes for the
whole training process– with very small dataset. In particular, the prediction
takes, on average, 451 miliseconds per map.

4.3 Experimental results

The first experiments were performed on INRAE1a. More precisely, the relief
maps were generated for the 10 meshes of the dataset, then predicted by our
network which is previously trained on INRAE1b. The output prediction is a
gray-level image. We threshold this image at 0.5 to obtain a binary image in
which the white pixels indicate the tree defect and black is not. The results are
given in Figure 14.

To evaluate and compare the methods, we used the classic metrics: precision,
recall and F measure (F1). For a fair comparison, we performed the evaluation
measures on the mesh points, as done in [18], but not the predicted maps. As

127

14 F. Delconte et al.

described in Section 2.3, from pixel positions, we can easily retrieve the mesh
point indices associated to the pixel, and identify those points for localizing the
defects on the mesh.

Fig. 14: Results on INRAE1a. First row: relief maps, second row: ground-truths,
Third row: predictions by our network.

Table 1 shows the obtained results. Generally, the proposed method outper-
forms both cylindrical-based [13] and patch-based [18] methods. We improve the
detection performance, about 41% and 8% better in F1 measure comparing to
[13] and [18], respectively. Figure 15 shows a visual comparison on meshes of the
results obtained by the proposed method and the patch-based method [18]. We
can see in Figure 15 (a) that our method tends to produce fewer false positives,
but sometimes miss small defects. This may due to the fact that the network
has not been trained with samples containing small defects. Figure 15 (b) is an
example where the detection by our method covers better the form of defects
than patch-based method [18].

We carried out a second experiment to demonstrate the generalization of
the network. Using the same parameters, we trained our CNN on mixed data
of INRAE1a and INRAE1b, i.e., 25 meshes in total. We generated 5 different
folds, each of which contains 20 meshes for training and 5 for validation. Table 2

128

Tree Defect Segmentation using Geometric Features and CNN 15

INRAE1a
Patch method [18] Cylinder method [13] Our method
prec recall F1 prec recall F1 prec recall F1

Fir1 0.747 0.769 0.757 0.137 0.937 0.238 0.746 0.857 0.797

Fir2 0.673 0.775 0.719 0.353 0.452 0.395 0.792 0.801 0.795

WildCherry1 0.696 0.765 0.728 0.683 0.512 0.584 0.757 0.881 0.813

WildCherry2 0.846 0.711 0.771 0.661 0.822 0.732 0.799 0.955 0.870

Redoak1 0.749 0.742 0.744 0.479 0.444 0.459 0.866 0.696 0.770

Redoak2 0.428 0.833 0.564 0.061 0.400 0.104 0.730 0.428 0.538

Beech 0.670 0.604 0.634 0.360 0.289 0.320 0.863 0.591 0.701

Birch 0.733 0.756 0.744 0.607 0.421 0.496 0.774 0.726 0.748

Elm 0.694 0.755 0.721 0.494 0.309 0.378 0.881 0.642 0.741

WildServiceTree 0.247 0.741 0.370 0.057 0.463 0.100 0.856 0.504 0.633

Overall 0.685 0.740 0.710 0.289 0.563 0.380 0.793 0.789 0.790

Table 1: Comparison results: Overall row is computed from the sum of
TP ,TN ,FP and FN on all the tested meshes.

summarizes the distribution of data and the results obtained. For each fold in
Table 2, the meshes indicated in Mesh id correspond to test data, and the others
are used for training. In this way, we ensure to test and compare our method
with the others on all available data. It can be observed that, over the 5 folds,
we generally obtain the best F1 measure, and almost better on the precision
comparing to [13] and [18]. The worst scoring result by the proposed method is
Beech3 in the fold 5, we are at 0.336 for F1. Though, this score is comparable
to the best score of 0.493 obtained by [18].

Note that the measured results of the methods [18] and [13] for the dataset
INRAE1a (see Table 2) are from [18], while the results on the new dataset in
Table 2 are obtained by using the source code from the GitHub repository with
the recommended parameters described in [17,18].

An online demonstration for testing the proposed method is available at:
https://kerautret.github.io/TLDDC/

5 Source code to reproduce results

5.1 Global view

The source code to reproduce the results presented in the article, including relief
map and segmentation, is available at the GitHub repository:

https://github.com/FlorianDelconte/TLDDC
The repository is composed of different file and directories :

– The directory Centerline contains the centerline code.
– The directory examples contains INRAE1e and INRAE1b meshes, each

mesh is accompanied by two files indicating the ground-truth location of

129

16 F. Delconte et al.

Our method Patch method [18] Our method Patch method [18]

(a) Redoak2 (b) WildServiceTree

Our method Patch method [18] Our method Patch method [18]

(c) WildCherry1 (d) WildCherry2

Fig. 15: Comparison on mesh. Yellow is true positive, red is false negative and
green is false positive compared to the ground-truth.

defects using mesh faces and mesh points, suffixed by -groundtruth.id and
-groundtruth-points.id respectively.

– The directory models contains the trained models in the paper: five files of
.hdf5 extension for the corresponding k-fold, and one named KFoldAssocia-
tion for a relation file between mesh example and the k-fold.

– The directories mesures and run contain python and bash scripts to directly
reproduce the results of this article.

– The code for generating the relief maps is found in UnrolledMap.h, Un-
rolledMap.cpp, DefectSegmentationUnroll.h and DefectSegmentationUnroll.cpp.

130

Tree Defect Segmentation using Geometric Features and CNN 17

Fold number Mesh id
Patch method [18] Cylinder method [13] Our method
prec recall F1 prec recall F1 prec recall F1

1

Beech 0.872 0.511 0.643 0.325 0.316 0.318 0.853 0.655 0.740
Birch 0.647 0.843 0.731 0.577 0.445 0.500 0.818 0.692 0.749
Alder1 0.089 0.746 0.158 0.044 0.380 0.075 0.798 0.391 0.524
Aspen1 0.462 0.721 0.562 0.174 0.671 0.274 0.831 0.794 0.811
Hornbeam4 0.308 0.802 0.445 0.016 0.954 0.030 0.779 0.589 0.669

Overall 0.480 0.687 0.563 0.089 0.484 0.150 0.831 0.687 0.750

2

Elm 0.771 0.669 0.715 0.158 0.670 0.253 0.889 0.578 0.699
Fir1 0.600 0.824 0.693 0.107 0.758 0.187 0.831 0.819 0.824
Alder2 0.446 0.796 0.571 0.283 0.530 0.366 0.612 0.843 0.707
Aspen2 0.666 0.619 0.641 0.352 0.303 0.323 0.917 0.419 0.574
Birch4 0.673 0.572 0.616 0.509 0.532 0.518 0.694 0.819 0.750

Overall 0.618 0.674 0.643 0.199 0.527 0.286 0.759 0.673 0.712

3

Fir2 0.656 0.814 0.725 0.279 0.514 0.360 0.820 0.822 0.820
Redoak1 0.706 0.743 0.723 0.487 0.373 0.420 0.834 0.681 0.748
Alder3 0.414 0.556 0.474 0.352 0.431 0.385 0.775 0.381 0.510
Aspen3 0.544 0.523 0.532 0.116 0.386 0.175 0.892 0.579 0.701
Linden 0.791 0.600 0.681 0.154 0.950 0.264 0.874 0.644 0.740

Overall 0.624 0.648 0.635 0.189 0.565 0.281 0.845 0.635 0.724

4

Redoak2 0.428 0.827 0.562 0.062 0.474 0.108 0.802 0.350 0.486
WildCherry1 0.680 0.772 0.721 0.679 0.593 0.632 0.826 0.805 0.814
Alder4 0.901 0.625 0.737 0.782 0.489 0.601 0.952 0.756 0.841
Aspen4 0.897 0.454 0.602 0.341 0.729 0.463 0.953 0.632 0.759
Redoak4 0.479 0.760 0.587 0.086 0.271 0.12 0.815 0.431 0.563

Overall 0.749 0.617 0.676 0.379 0.589 0.460 0.904 0.699 0.787

5

WildCherry2 0.788 0.744 0.765 0.807 0.674 0.733 0.852 0.943 0.894
WildServiceTree 0.262 0.732 0.384 0.051 0.479 0.090 0.856 0.559 0.675
Beech3 0.497 0.491 0.493 0.143 0.192 0.16 0.867 0.231 0.364
Birch2 0.395 0.595 0.474 0.083 0.175 0.108 0.804 0.454 0.580
Redoak3 0.563 0.618 0.587 0.143 0.656 0.232 0.862 0.622 0.722

Overall 0.564 0.638 0.597 0.222 0.480 0.301 0.851 0.627 0.721

Table 2: Comparison results on mixed dataset. Overall row is computed from
the sum of TP ,TN ,FP and FN on all the tested meshes.

5.2 Installation

For compilation process, the program required this libraries to be installed:

– DGtal 1 1 0 or later : https://github.com/DGtal-team/DGtal
– Eigen3 : https://eigen.tuxfamily.org/dox/GettingStarted.html
– GNU GSL : https://www.gnu.org/software/gsl/
– PCL : https://pointclouds.org/downloads/

To use the segmentation models, these following dependencies are necessary:

– Tensorflow2.2 : https://www.tensorflow.org/install/pip
– tensorflow-addons : https://www.tensorflow.org/addons/overview

131

18 F. Delconte et al.

– openCV : https://pypi.org/project/opencv-python/

Instructions for installing on ubuntu 20.04 and debian 10 have been tested
and are detailed on GitHub. Once the dependencies are installed and the sources
downloaded, the code is built using the following commands:

cd TLDDC
mkdir build
cd build
cmake .. -DDGtal DIR=/path/to/DGtalSourceBuild
make

Two executable files are generated in the build directory:

– segunroll allows to generate relief maps from meshes.
– segToMesh allows to project the segmentation of the defects of the relief map

towards the mesh.

5.3 Usage

To generate the relief map, run the following command from build:

./segunroll -i InputMesh [-h] [-n] [CenterlineParameters] [ReliefMapParameters]

With

– InputMesh is the path to a trunk mesh.
– -h is the option for the command line helper.
– -n is the option allows to invert the normals of the faces of the meshes5.
– CenterlineParameters contains the parameters of centerline computation (--

accRadius, --trackStep, --binWidth, --patchWidth, --patchHeight, --voxelSize).
They are set by default with the recommended values in [17].

– ReliefMapParameters contains the parameters for the relief map (--decreaseFactor,
--grayscaleOrigin, --intensityPerCm). They are also set with default values.

The following files are created after executing the command:

– centerline.off : the generated centerline.
– discretisation.txt : the discretization map.
– output.pgm: the generated relief map.

To segment the bark tree defects, run the following command from build:

python3 ../run/predict.py InputReliefMap PathToModel Threshold

With

– InputReliefMap contains the path to the relief map.

5 The normals must be directed towards the interior of the tree

132

Tree Defect Segmentation using Geometric Features and CNN 19

– PathToModel contains the model file, one of the five in the models directory.
– Treshold contains the threshold ([0; 255]) to apply on the network prediction.

The following files are created after executing the command:

– outputSEG.pgm: the prediction result by the network.
– outputSEGTRESH.pgm: the segmented image after thresholding.

To project the segmented result on the input mesh, run the following command
from build:

./segToMesh -i InputMesh

With InputMesh contains the path to the same mesh used to generate the relief
map. The following files are created after executing the command:

– output-defect.id : the file containing the id of the points of the mesh belonging
to a defect (to compare with groundTruth).

– Poutputdefect.off : the output mesh with the segmented defects in green.

To execute these three scripts in succession, run the command from run:

./deep-segmentation.sh PathToModel InputMesh Treshold

To reproduce the measurements in Table 1, run the following command from
mesures:

./testINRAE1A.sh

This command fill the results.tex file which contains the performance measure
presented in this article.
To reproduce the Table 2 table, run the follwing command from mesures:

./testK folds.sh

After executing this command, five files are created: resultsN.tex (with N =
1...5) containing the performance measure corresponding to the lines in Table 2.

6 Conclusion

From the difficult problem of tree defect detection, new contributions is proposed
in this work with first a new relief map able to locally adapt itself on global shape
of the trunk. Such an adaption is important since the trunk geometry may appear
with significant variations which make wrong the segmentation of the defect. The
second contribution, is to propose a segmentation process based on the U-Net
architecture allowing to outperform the previous works. The results, source code
and dataset are all available on a git repository allowing the reproduction of the
results together with an online demonstration.

In future works, we plan to address the defect classification. Such features
will be interesting to get a finer estimation of the wood quality. Other perspec-
tives consist in investigating the 3D point cloud semantic segmentation such as
PointNet [20], ConvPoint [1], PointCNN [15], . . .

133

20 F. Delconte et al.

References

1. Boulch, A.: Convpoint: Continuous convolutions for point cloud processing. Com-
puters & Graphics (2020)

2. Carpentier, M., Giguère, P., Gaudreault, J.: Tree species identification from bark
images using convolutional neural networks. In: 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). pp. 1075–1081 (2018)

3. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. CoRR abs/1708.04552 (2017)

4. Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., De Schutter, B.: Deep
convolutional neural networks for detection of rail surface defects. In: International
Joint Conference on Neural Networks (IJCNN). pp. 2584–2589 (2016)

5. Gilbert, G.S., Ballesteros, J.O., Barrios-Rodriguez, C.A., Bonadies, E.F.et al..:
Use of Sonic Tomography to Detect and Quantify Wood Decay in Living Trees.
Applications in Plant Sciences 4(12) (Dec 2016)

6. Gélard, W., Herbulot, A., Devy, M., Casadebaig, P.: 3D leaf tracking for plant
growth monitoring. In: 2018 25th IEEE International Conference on Image Pro-
cessing (ICIP). pp. 3663–3667. IEEE (2018)

7. He, T., Liu, Y., Yu, Y., Zhao, Q., Hu, Z.: Application of deep convolutional neural
network on feature extraction and detection of wood defects. Measurement 152,
107357 (2020), publisher: Elsevier

8. Iglovikov, V., Shvets, A.: Ternausnet: U-net with VGG11 encoder pre-trained on
imagenet for image segmentation. CoRR abs/1801.05746 (2018)

9. Keras: https://keras.io/guides/functional_api/

10. Kerautret, B., Krähenbühl, A., Debled-Rennesson, I., Lachaud, J.O.: Centerline
detection on partial mesh scans by confidence vote in accumulation map. In: 2016
23rd International Conference on Pattern Recognition (ICPR). pp. 1376–1381 (Dec
2016)

11. Kerautret, B., Krähenbühl, A., Debled-Rennesson, I., Lachaud, J.O.: On the imple-
mentation of centerline extraction based on confidence vote in accumulation map.
In: International Workshop on Reproducible Research in Pattern Recognition. pp.
116–130. Springer (2016)

12. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (12 2014)

13. Kretschmer, U., Kirchner, N., Morhart, C., Spiecker, H.: A new approach to as-
sessing tree stem quality characteristics using terrestrial laser scans. Silva Fennica
47 (01 2013)

14. Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Mothe, F., Longuetaud, F.:
Knot segmentation in 3D CT images of wet wood. Pattern Recognition 47(12),
3852–3869 (Dec 2014)

15. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-
transformed points. In: Advances in neural information processing systems. pp.
820–830 (2018)

16. Lu, L., Shin, Y., Su, Y., Karniadakis, G.E.: Dying relu and initialization: Theory
and numerical examples (2019)

17. Nguyen, V.T., Kerautret, B., Debled-Rennesson, I., Colin, F., Piboule, A., Con-
stant, T.: Algorithms and implementation for segmenting tree log surface defects.
In: International Workshop on Reproducible Research in Pattern Recognition. pp.
150–166. Springer (2016)

134

Tree Defect Segmentation using Geometric Features and CNN 21

18. Nguyen, V.T., Kerautret, B., Debled-Rennesson, I., Colin, F., Piboule, A., Con-
stant, T.: Segmentation of defects on log surface from terrestrial lidar data. In:
2016 23rd International Conference on Pattern Recognition (ICPR). pp. 3168–
3173. IEEE (2016)

19. Pfeifer, N., Gorte, B., Winterhalder, D.: Automatic reconstruction of single trees
from terrestrial laser scanner data. Int. Arch. of Photogram. Remote Sensing &
Spatial Information Sciences 35 (01 2004)

20. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets
for 3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 652–660 (2017)

21. Rehush, N., Abegg, M., Waser, L.T., Brändli, U.B.: Identifying tree-related mi-
crohabitats in TLS point clouds using machine learning. Remote Sensing 10(11),
1735 (2018), publisher: Multidisciplinary Digital Publishing Institute

22. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. CoRR abs/1505.04597 (2015)

23. Schraml, R., Entacher, K., Petutschnigg, A., Young, T., Uhl, A.: Matching score
models for hyperspectral range analysis to improve wood log traceability by fin-
gerprint methods. Mathematics 8(7), 1071 (2020)

24. Schütt, C., Aschoff, T., Winterhalder, D., Thies, M., Kretschmer, U., Spiecker, H.:
Approaches for recognition of wood quality of standing trees based on terrestrial
laserscanner data. Laser-scanners for forest and landscape assessment. Int. Archives
of Photogrammetry, Remote Sensing, and Spatial Information Sciences 36, 179–
182 (2004)

25. Tabernik, D., Sela, S., Skvarc, J., Skocaj, D.: Segmentation-based deep-learning
approach for surface-defect detection. Journal of Intelligent Manufacturing pp. 1–
18 (2020)

26. Tensorflow: https://www.tensorflow.org/api_docs
27. Thomas, L., Shaffer, C.A., Mili, L., Thomas, E.: Automated detection of severe

surface defects on barked hardwood logs. Forest (10171) (2006)
28. Thomas, R.E., Thomas, L.: Using parallel computing methods to improve log sur-

face defect detection methods. In: 18th International Nondestructive Testing and
Evaluation of Wood Symposium; 2013 September 24-27; Madison, WI. Gen. Tech.
Rep. FPL-226. Madison, WI: US Department of Agriculture, Forest Service, Forest
Products Laboratory: 196-205. pp. 196–205 (2013)

29. Wagner, F., Ipia, A., Tarabalka, Y., Lotte, R., Ferreira, M., P.M, A., Gloor, M.,
Phillips, O., Aragão, L.: Using the u-net convolutional network to map forest types
and disturbance in the atlantic rainforest with very high resolution images. Remote
Sensing in Ecology and Conservation 5 (03 2019)

30. Weimer, D., Thamer, H., Scholz-Reiter, B.: Learning defect classifiers for textured
surfaces using neural networks and statistical feature representations. Procedia
CIRP 7, 347–352 (12 2013)

31. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net
architecture for medical image segmentation (2018)

135

A Heuristic-Based Decision Tree for Connected
Components Labeling of 3D Volumes:

Implementation and Reproducibility Notes

Federico Bolelli, Stefano Allegretti, and Costantino Grana

Dipartimento di Ingegneria “Enzo Ferrari”
Università degli Studi di Modena e Reggio Emilia

{name.surname}@unimore.it

Abstract. This paper provides a detailed description of how to install,
setup, and use the YACCLAB benchmark to test the algorithms pub-
lished in “A Heuristic-Based Decision Tree for Connected Components
Labeling of 3D Volumes,” underlying how the parameters affect and in-
fluence experimental results.

1 Introduction

Although introduced many decades ago [30], the task of labeling objects inside
binary images is still employed in several scenarios, whenever an identification
of segmented visual objects or image regions is required.

This procedure, usually identified as Connected Components Labeling or
CCL in short, has a unique and exact solution which provides a description of
the objects inside binary images, represented by an output symbolic image where
pixels of a connected component are assigned the same integer identifier.

As a matter of fact, many state-of-the-art image processing and computer
vision pipelines exploit CCL as a fundamental pre- or post-processing step. The
fields of application of such an algorithm range from Object Tracking [17] to Doc-
ument Restoration [9,24], including Image Segmentation [1,28], Medical Imaging
[12,18,29] and many others [6,16].

For this reason, having a fast and efficient algorithm, able to minimize its
impact on image analysis tasks, is undoubtedly very advantageous. This is why
the research efforts in labeling techniques have such a very long story, full of
different strategies and improvements targeting both sequential [8,19,21,22,33]
and parallel architectures [2,3,5,23,27,31,34].

Among them, some of the most promising techniques that led to major break-
throughs in the field consist in the usage of Decision Trees (DTrees), combined
with the 2 × 2 block-based approach. A detailed description of the algorithms
based on these paradigms is provided in [7]. Moreover, algorithmic solutions
based on DTrees have demonstrated their effectiveness even when applied, with
the necessary variations, to parallel architectures [4,11].

Unfortunately, existing techniques for the generation of DTrees become quickly
unfeasible when the size of the mask used to scan the input image increases. This

136

II

prevented the application of block-based trees to 3D scenarios. In order to com-
pensate for this limitation a novel heuristic algorithm, based on decision tree
learning and named Entropy Partitioning Decision Tree (EPDT), has been pre-
sented in [32]. This algorithm allows to compute near-optimal decision trees for
large scan masks, overtaking the limitations of existing approaches.

This paper describes the benchmark used to evaluate the performance of
EPDT-generated algorithms, focusing on how to configure it to reproduce the
experiments reported in [32].

2 The Evaluation Framework

YACCLAB, Yet Another Connected Components Labeling Benchmark, has been
originally released in [20] with the aim of providing a fair comparison and evalua-
tion of CCL algorithms. The benchmark has been later improved with additional
datasets, tests and with an extension to 3D and GPU algorithms [5,10]. After its
first appearance in 2016, it has been used by many authors [13,14,35] to compare
the performance of novel proposals with state-of-the-art solutions, thus setting
a de-facto standard.

When measuring the performance of an algorithm several details should be
taken into account, as they could significantly influence the performance. How-
ever, CCL is a well-defined problem and the burden of evaluation can be reduced
to the measure of execution “speed”.

The main elements that affect execution speed can be resumed as follows:
data on which tests are performed, implementation details, hardware capabili-
ties, and code optimization provided by the compiler. YACCLAB takes all these
aspects into account; the benchmark is open-source and provides an implemen-
tation of state-of-the-art algorithms, directly including the source code released
together with the scientific papers whenever available. Given its open-source
nature, anyone can verify literature claims testing the algorithms with any com-
bination of hardware architecture, operating system and build tools.

The public dataset provided with the benchmark covers most of CCL fields
of application, including 2D images and 3D volumes of both real world and syn-
thetically generated domains. A detailed description of the YACCLAB dataset is
available in [5]. Because experimental results reported in [32] concern 3D EPDT-
generated algorithms, the general properties of 3D datasets are summarized in
Table 1 and a brief description follows:

– OASIS is a dataset of medical MRI data taken from the OASIS project [26],
binarized with the Otsu threshold;

– Mitochondria is the Electron Microscopy Dataset [25], which contains binary
sections taken from the CA1 hippocampus;

– Hilbert consists of the 3D Hilbert curve, which is a fractal space-filling curve,
obtained at different iterations (1 to 6) of the construction method.

The source code of the EPDT-generated algorithms as well as the bench-
marking suite is available at https://github.com/prittt/YACCLAB.

137

III

Table 1. Properties of 3D datasets in terms of foreground pixel density, number of
connected components (objects), number of volumes and resolution.

Density Objects
Volumes Resolution

µ σ µ σ

Hilbert 0.055 0.087 1 0 373 256× 256× 128
Mitochondria 0.059 0.006 40 5 3 1024× 768× 165
OASIS 0.198 0.025 3199 1028 6 128× 128× 128

3 How to Test EPDT-Generated Algorithms

In order to correctly install and run the current version of the YACCLAB bench-
mark, the following packages, libraries and utilities are required:

– CMake 3.13 or higher (https://cmake.org);
– OpenCV 3.0 or higher (http://opencv.org);
– Gnuplot (http://www.gnuplot.info);
– A C++ compiler supporting C++14.

The installation procedure is well detailed in the aforementioned GitHub repos-
itory; the main steps can be resumed as follows:

– Clone the repository;
– Generate the YACCLAB project using CMake;
– Set the configuration file config.yaml placed in the installation folder;
– Open the project folder, build and run.

When configuring the project through CMake the flags YACCLAB ENABLE 3D

and YACCLAB ENABLE EPDT * must be enabled in order to set-up the benchmark
for 3D algorithms and to include EPDT implementations. The CMake file should
automatically find the OpenCV installation path, otherwise it must be manually
specified. The flag YACCLAB DOWNLOAD DATASET 3D must be enabled if the user
wants CMake to automatically download the YACCLAB 3D dataset. CMake
will automatically generate the C++ project for the selected compiler.

YACCLAB allows to perform multiple tests: correctness is an initial valida-
tion of the algorithms; average runs algorithms on every image of a dataset, mea-
suring the average run-time; average with steps measures separated run-times for
the different steps each algorithm is composed of, including multiple scans over
the input image and allocation/deallocation of data structures; granularity uses
synthetic images to evaluate the performance of different approaches in terms
of scalability on the number of pixels, foreground density and pattern granular-
ity; memory reports the expected number of memory accesses required by an
algorithm on a reference dataset.

YACCLAB stores experimental results in the output path specified by the
configuration file. Multiple output formats including plain text, bar chart and
LATEX table will be produced.

138

IV

CCL algorithms are independent of the Union-Find strategy employed. For
this reason YACCLAB provides a Union-Find templated implementation for
most of the algorithms, thus being able to compare each algorithm (but those for
which the label solver is built-in) with different label solving strategies: standard
Union-Find (UF), Union-Find with Path Compression (UFPC) [33], Interleaved
Rem’s algorithm with splicing (RemSP) [15] and Three Table Array (TTA) [21].
This standardization reduces code variability, allowing to separate label solving
data structures from CCL strategies, and provides fair comparisons without
negatively impacting execution time.

4 Experiments Reproducibility

1 CPU 3D 26-way connectivity:

2 execute: true

3 perform:

4 correctness: true

5 average: true

6 average_with_steps: true

7 density: false

8 granularity: false

9 memory: true

10 algorithms:

11 - EPDT_3D_19c_RemSP

12 - EPDT_3D_22c_RemSP

13 - EPDT_3D_26c_RemSP

14 - LEB_3D_TTA

15 - RBTS_3D_TTA

Listing 1. Excerpt of the YAML
configuration file.

The EDPT algorithms were tested on
an Intel(R) Core(TM) i7-4790 CPU @
3.60GHz with Windows 10.0.17134 (64
bit) OS and the MSVC 19.15.26730 com-
piler. The benchmark was compiled for
x64 architecture with optimizations en-
abled. It is worth noticing that most com-
pilers need several minutes to build EPDT
algorithms; in particular, some of them
actually fail to compile EDPT 26c. For
these reasons, aforementioned algorithms
are optional and must be singularly en-
abled with CMake, as described in Sec-
tion 3.

The performance of EPDT-generated
algorithms have been compared to state-
of-the-art solutions over the collection of

3D datasets included in YACCLAB and described in Section 2. In order to repro-
duce the same experiments reported in [32], the CPU 3D 26-way connectivity

section of the configuration file must have its execute, perform and algorithms

fields set as in Listing 1. The other fields can remain as default. Finally, 2D tests
can be disabled to avoid useless experiments.

5 Conclusion

We described how to reproduce the experimental results reported in [32]. The
environment employed for testing the algorithms can significantly affect perfor-
mance. Cache size and RAM speed can change absolute results while preserving
relative performance. Operative System and compiler are likely to heavily influ-
ence the outcome.

139

V

References

1. Abramov, A., Kulvicius, T., Wörgötter, F., Dellen, B.: Real-Time Image Segmen-
tation on a GPU. In: Facing the multicore-challenge, pp. 131–142. Springer (2010)

2. Allegretti, S., Bolelli, F., Cancilla, M., Grana, C.: Optimizing GPU-Based Con-
nected Components Labeling Algorithms. In: 2018 IEEE International Conference
on Image Processing, Applications and Systems (IPAS). pp. 175–180. IEEE (2018)

3. Allegretti, S., Bolelli, F., Cancilla, M., Grana, C.: A Block-Based Union-Find Al-
gorithm to Label Connected Components on GPUs. In: Image Analysis and Pro-
cessing - ICIAP 2019. pp. 271–281. Springer (2019)

4. Allegretti, S., Bolelli, F., Cancilla, M., Pollastri, F., Canalini, L., Grana, C.: How
does Connected Components Labeling with Decision Trees perform on GPUs? In:
18th International Conference on Computer Analysis of Images and Patterns. pp.
39–51. Springer (2019)

5. Allegretti, S., Bolelli, F., Grana, C.: Optimized Block-Based Algorithms to Label
Connected Components on GPUs. IEEE Transactions on Parallel and Distributed
Systems pp. 423–438 (2019)

6. Berka, T.: The Generalized Feed-forward Loop Motif: Definition, Detection and
Statistical Significance. Procedia Computer Science 11, 75–87 (2012)

7. Bolelli, F., Allegretti, S., Baraldi, L., Grana, C.: Spaghetti Labeling: Directed
Acyclic Graphs for Block-Based Connected Components Labeling. IEEE Trans-
actions on Image Processing 29(1), 1999–2012 (2019)

8. Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected Components Label-
ing on DRAGs. In: International Conference on Pattern Recognition. pp. 121–126
(2018)

9. Bolelli, F., Borghi, G., Grana, C.: XDOCS: an Application to Index Historical
Documents. In: Digital Libraries and Multimedia Archives. pp. 151–162 (2018)

10. Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Toward reliable experiments on the
performance of Connected Components Labeling algorithms. Journal of Real-Time
Image Processing pp. 229–244 (2018)

11. Bolelli, F., Cancilla, M., Grana, C.: Two More Strategies to Speed Up Connected
Components Labeling Algorithms. In: International Conference on Image Analysis
and Processing. pp. 48–58. Springer (2017)

12. Canalini, L., Pollastri, F., Bolelli, F., Cancilla, M., Allegretti, S., Grana, C.: Skin
Lesion Segmentation Ensemble with Diverse Training Strategies. In: Computer
Analysis of Images and Patterns. pp. 89–101. Springer (2019)

13. Chabardès, T., Dokládal, P., Bilodeau, M.: A labeling algorithm based on a forest
of decision trees. Journal of Real-Time Image Processing pp. 1527–1545 (2019)

14. Chen, J., Nonaka, K., Sankoh, H., Watanabe, R., Sabirin, H., Naito, S.: Efficient
Parallel Connected Component Labeling with a Coarse-to-fine Strategy. IEEE Ac-
cess 6, 55731–55740 (2018)

15. Dijkstra, E.W.: A discipline of programming. Prentice-Hall Englewood Cliffs, N.J
(1976)

16. Dinneen, M.J., Khosravani, M., Probert, A.: Using OpenCL for Implementing Sim-
ple Parallel Graph Algorithms. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA) (2011)

17. Dubois, A., Charpillet, F.: Tracking Mobile Objects with Several Kinects using
HMMs and Component Labelling. In: Workshop Assistance and Service Robotics in
a human environment, International Conference on Intelligent Robots and Systems.
pp. 7–13 (2012)

140

VI

18. Eklund, A., Dufort, P., Villani, M., LaConte, S.: BROCCOLI: Software for fast
fMRI analysis on many-core CPUs and GPUs. Frontiers in Neuroinformatics 8, 24
(2014)

19. Grana, C., Baraldi, L., Bolelli, F.: Optimized Connected Components Labeling
with Pixel Prediction. In: Advanced Concepts for Intelligent Vision Systems. pp.
431–440. Springer (2016)

20. Grana, C., Bolelli, F., Baraldi, L., Vezzani, R.: YACCLAB - Yet Another Con-
nected Components Labeling Benchmark. In: 2016 23rd International Conference
on Pattern Recognition (ICPR). pp. 3109–3114. Springer (2016)

21. He, L., Chao, Y., Suzuki, K.: A Linear-Time Two-Scan Labeling Algorithm. In:
International Conference on Image Processing. vol. 5, pp. 241–244 (2007)

22. He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-Transition-Based Connected-
Component Labeling. IEEE Transactions on Image Processing” 23(2), 943–951
(2014)

23. Komura, Y.: GPU-based cluster-labeling algorithm without the use of conventional
iteration: Application to the Swendsen–Wang multi-cluster spin flip algorithm.
Computer Physics Communications 194, 54–58 (2015)

24. Lelore, T., Bouchara, F.: FAIR: A Fast Algorithm for Document Image Restora-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 2039–
2048 (2013)

25. Lucchi, A., Li, Y., Fua, P.: Learning for Structured Prediction Using Approximate
Subgradient Descent with Working Sets. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1987–1994. IEEE (2013)

26. Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open
Access Series of Imaging Studies (OASIS): Longitudinal MRI Data in Nondemented
and Demented Older Adults. J. Cognitive Neurosci. 22(12), 2677–2684 (2010)

27. Perri, S., Spagnolo, F., Corsonello, P.: A Parallel Connected Component Labeling
Architecture for Heterogeneous Systems-on-Chip. Electronics 9(2), 292 (2020)

28. Pollastri, F., Bolelli, F., Paredes, R., Grana, C.: Improving Skin Lesion Segmen-
tation with Generative Adversarial Networks. In: 2018 IEEE 31st International
Symposium on Computer-Based Medical Systems (CBMS). pp. 442–443. IEEE
(2018)

29. Pollastri, F., Bolelli, F., Paredes, R., Grana, C.: Augmenting data with GANs
to segment melanomaskin lesions. In: Multimedia Tools and Applications. p.
15575–15592. Springer (2019)

30. Rosenfeld, A., Pfaltz, J.L.: Sequential Operations in Digital Picture Processing.
Journal of the ACM 13(4), 471–494 (1966)

31. Spagnolo, F., Frustaci, F., Perri, S., Corsonello, P.: An Efficient Connected Com-
ponent Labeling Architecture for Embedded Systems. Journal of Low Power Elec-
tronics and Applications 8(1), 7 (2018)

32. Söchting, M., Allegretti, S., Bolelli, F., Grana, C.: A Heuristic-Based Decision Tree
for Connected Components Labeling of 3D Volumes. In: 2020 25th International
Conference on Pattern Recognition (ICPR). IEEE (2021)

33. Wu, K., Otoo, E., Suzuki, K.: Two Strategies to Speed up Connected Compo-
nent Labeling Algorithms. Tech. Rep. LBNL-59102, Lawrence Berkeley National
Laboratory (2005)

34. Zavalishin, S., Safonov, I., Bekhtin, Y., Kurilin, I.: Block Equivalence Algorithm
for Labeling 2D and 3D Images on GPU. Electronic Imaging 2016(2), 1–7 (2016)

35. Zhang, D., Ma, H., Pan, L.: A Gamma-signal-regulated Connected Components
Labeling Algorithm. Pattern Recognition 91, 281–290 (2019)

141

Reproducibility Aspects of Crack Detection as a
Weakly-Supervised Problem: Towards Achieving

Less Annotation-Intensive Crack Detectors

Yuki Inoue

Hitachi Ltd., Tokyo, Japan
yuki.inoue.wh@hitachi.com

Abstract. This paper focuses on the reproducibility aspects of our
ICPR2020 paper titled Crack Detection as a Weakly-Supervised Problem:
Towards Achieving Less Annotation-Intensive Crack Detectors. More specif-
ically, we will describe our efforts in making the proposed framework re-
producible, the dataset reproducible, and the experiments reproducible.
In addition, we argue that reproducibility is a step toward adoptable
research, which is something all researchers should strive for. To pro-
mote future research, the implementation of the paper is publicly made
available at https://github.com/hitachi-rd-cv/weakly-sup-crackdet.

Keywords: Crack detection · Weakly-supervised learning · Reproducible
research.

1 Introduction

Ever since the epoch-making win by AlexNet in the ImageNet LSVRC-2012
competition [7], the field of machine learning and especially deep learning have
garnered considerable attention. In fact, the booming corporate funding for AI-
related research indicate that we are deep in the “AI spring” [9]. It feels as
though everything new has “AI” sticker slapped on, even though their use of
“AI” may widely widely.

The AI trend has also swept the floor in the academic realm as well. The num-
ber of submitted papers for premier machine learning conferences like NeurIPS
has increased by 50% from 2018 to 2019 [11]. This sudden increase in the num-
ber of published paper further supports the claim that the AI field is popular
and the field is progressing at a rapid pace. However, it also means that there is
an increase in number of papers that are based on bad practices, such as over-
aggressive hyperparameter tuning and lack of validation dataset. Also, recent
culture of “publish or perish” in academia promotes research that are not thor-
oughly analyzed and tested. Unfortunately, the exploding volume of submitted
papers has made it difficult for the review process to identify and remove such
papers. As one of the main reasons why we publish papers is to learn from and
adopt each other’s ideas, publishing ill-practiced papers is not only meaningless
for the progress of the academia, but actually toxic, as we may learn erroneous

142

2 Yuki Inoue

information and be misguided. Therefore, we must try our best to promote pub-
lishing good papers.

One of the ways to judge the quality of a paper is to check if a paper is repro-
ducible. Unfortunately, reproducibility does not come for free. In this paper, we
will describe how our ICPR2020 paper Crack Detection as a Weakly-Supervised
Problem: Towards Achieving Less Annotation-Intensive Crack Detectors [6] was
designed for reproducibility, to showcase how one might conduct a reproducible
research. In addition, we would also like to claim that the ultimate goal of any
paper is to be adopted by others, as one of the basic principles of the progress
within academia is adopting and building upon each other’s work. On that note,
we will describe reproducibility in a larger context of adoptability as well, by
discussing how we designed our research for adoptability.

We hope that others will find some of our suggestions useful when they design
their own research.

2 Overview of the Original Paper

Before we dive into the discussions on reproducibility, let us briefly review the
contents of our original paper. In the paper, we tackled the problem of crack
detection as a weakly-supervised problem. Because the crack detection task is
formulated as a semantic segmentation task, it is very time-consuming to prepare
the annotation. As it is ideal to have site-specific annotations to maintain high
detection accuracy, the total annotation cost becomes very large. This motivated
us to formulate the crack detection problem as a weakly-supervised problem, in
which the annotations are approximately given.

As listed in the paper, the main contributions of the paper are three fold:

– Proposal of a framework that acts as a strong baseline for the task.
– Providing synthetic annotations as well as two manual annotations.
– Showing the effectiveness of the proposed framework under weakly-supervised

settings.

In the next section we will detail our efforts on reproducibility of each of the
items listed above.

3 Reproducible Research Design

3.1 Reproducible Proposal

In the paper, we proposed a simple framework for tackling weakly-supervised
crack detection. In the proposal, we augment the traditional crack detection
model with a rule-based, darkness calculation branch, conducting the inference
via two parallel branches. In the paper, we refer to the traditional crack detection
model as the Macro Branch, and the new rule-based module as the Micro Branch.
The final prediction is generated by multiplying the outputs of the two branches
as shown in Fig. 1.

143

Title Suppressed Due to Excessive Length 3

Fig. 1: Overview of the proposed framework with an example input. Taken from
[6].

As one may notice, the configuration of the Micro Branch is kept very simple-
it only calculates the pixel darkness. Adding other image processing techniques
such as brightness equalization or pepper noise suppression could improve the
detection accuracy, at least for some datasets. However, as the main goal of
the paper is to show the strength of the framework structure (i.e. splitting
the inference path into two branches), exploring the best performing module
for the framework would ambiguate the main focus of the paper. Therefore,
we decided to keep the Micro Branch as simple as possible. Moreover, we were
concerned that adding extra processes to the Micro Branch would serve as a form
of hyperparameter tuning, making the proposal appear more successful than it
actually is, and potentially not be robust for new datasets.

To showcase this point, we tested the framework with various instantiations
of the Micro Branch, as listed below.

– Basic: Uses a simple darkness calculation as proposed in the paper.
– Noise R: A pepper noise suppression operation is added as a postprocess to

Basic. It is characterized by a tuple (t, s), where t is the threshold value
to binarize the darkness output, and s is the maximum pixel size for noise
suppression.

– CLAHE: Brightness equalizing operation called CLAHE [12] is used as a
preprocess to Basic.

Table 1 shows the result of different Micro Branch applied to the Macro
Branch output of the Inoue et al . model from the original paper. The bolded
values correspond to cases in which the augmented Micro Branch performs better
than the Basic Micro Branch. The sparsity of the bolded values indicate that
the augmented Micro Branch does not perform better than the Basic Micro
Branch in general. In addition, even for situations in which the augmented Micro
Branch does perform better, the margins are very slim for most cases. The Noise
R outputs also exhibit the hyperparameter tuning nature of introducing new
modules to the Micro Branch as we mentioned earlier, as two different settings
of the same method produces noticeably different outcomes.

144

4 Yuki Inoue

Table 1: Comparison of F-score for different augmentations of the Micro Branch.
Basic corresponds to the Micro Branch used in the original paper. Bold values
correspond to values better than that of the Basic Micro Branch.

Aigle CFD DCD
R R-er Dil-4 R R-er Dil-4 R R-er Dil-4

Basic 0.816 0.802 0.775 0.631 0.597 0.558 0.836 0.813 0.813
Noise R (0.5, 4) 0.817 0.802 0.775 0.631 0.597 0.561 0.837 0.814 0.814
Noise R (0.7, 8) 0.814 0.797 0.796 0.617 0.582 0.543 0.835 0.813 0.812
CLAHE 0.810 0.797 0.786 0.623 0.595 0.561 0.835 0.805 0.808

In addition to the simplicity of the Micro Branch structure, its integration to
the whole framework is kept simple. As mentioned earlier, the Macro Branch is a
traditional crack detector without any modifications. Therefore, researchers can
take any crack detectors of their choice and integrate the Micro Branch without
major hacking. In other words, simple setup also implies simple implementation,
and it encourages other researchers to adopt proposed method. One notable
example of this point is the residual architecture introduced by the ResNet paper
[4]. We believe that part of the reason for the wide acceptance of the residual
idea owes to its simplicity and ease of implementation. Just like how the ResNet
paper introduced the residual architecture to the existing feedforward networks,
our paper introduced the Micro Branch to the existing semantic segmentation
networks. We conclude that for reproducible and adoptable research, simpler is
better.

3.2 Reproducible Datasets

To test the proposed framework under weakly-supervised settings, we prepared
low quality annotations. Two types of annotations were prepared- namely, man-
ual and synthetic annotations.

First important item for reproducible and fair dataset preparation is a solid
annotation procedure. To see an example of this, let us discuss how we prepared
the manual annotations. We prepared two sets of manual annotations, named
Rough and Rougher annotations, where latter is of lower quality than the for-
mer. At first attempt, our instructions to the annotators were very vague. We
just asked the annotators to annotate one dataset roughly, and another rougher.
The result was chaotic as shown in Fig. 2, as different annotators had different
understanding of the word “rough.” Therefore we decided to define the anno-
tation procedure more strictly. The final annotation procedures are outlined in
Sec. A of the Appendix of the original paper. Of the many items we tried, speci-
fying the pensize especially helped the annotators to solidify the definition of the
rough and rougher annotation styles. After setting a strict instructions, the an-
notation process ended without any problems. Solid annotation procedure helps
the annotators to be on the same page, and also helps future researchers to be
on the same page when they decide to produce new annotations with similar

145

Title Suppressed Due to Excessive Length 5

O
ri

g
in

a
l

G
T

Fig. 2: Examples of annotations without specific annotation instructions. The
annotation qualities greatly vary due to lack of solid instructions.

Original
Precise GT

(white)
Dilation (red) Distortion (blue) Diff

Fig. 3: Example dataset synthesis procedure. Colors in the parenthesis corre-
spond to the pixel colors in the “Diff” column.

standards. This makes it easier to reproduce the results on new datasets, and
facilitates adoptation of the work.

In addition to manual annotations, we prepared a suite of synthetic annota-
tions. This is done by applying the dilation operation to the precise annotation,
and distorting the output using Elastic Transform [1]. The whole process is sum-
marized in Fig. 3.

There are couple of reasons for deciding to synthesize annotations. First,
if all we have is the results for the manual annotations, there is a possibility
that there was an annotation bias that unfairly favors the proposed method. By
making the annotation process automatic and transparent, we can claim that
the evaluation results are fair. Second, automatic annotation synthesis means
that annotations of same standard can be reproduced for different datasets, if
we release the synthesis code.

Also, by varying the number of times the dilation operation is applied to the
precise annotation, researchers can generate annotations of arbitrary quality.
This means that in addition to being fair, researchers can easily adopt and
extend our research at a small cost. This can be confirmed from the precision
statistics of the synthesized annotations summarized in Table 2. As we increase
the number of dilation operations, the precision, which is in direct relationship
with annotation quality, gets lowered.

To make the synthesized annotations as realistic as possible, we ensured that
the synthesized annotation’s crack regions has a target recall lower bound tl
against the true crack pixels when applying Elastic Transform, to prevent the

146

6 Yuki Inoue

Table 2: Recall (left) and precision (right) statistics for the synthetic and the
manual annotations. R and R-er stands for Rough and Rougher Annotations.

Recall Precision
Dil-1 Dil-2 Dil-3 Dil-4 R R-er Dil-1 Dil-2 Dil-3 Dil-4 R R-er

Aigle 0.93 0.92 0.93 0.93 0.97 0.90 0.40 0.27 0.21 0.18 0.40 0.28
CFD 0.95 0.95 0.95 0.95 0.82 0.92 0.50 0.34 0.26 0.21 0.49 0.34
DCD 0.95 0.95 0.95 0.95 0.95 0.97 0.65 0.52 0.43 0.38 0.69 0.45

annotations from being severely morphed. In addition, we set a target recall
upper bound tu as well to simulate rushed human annotators who are likely
to miss parts of cracks during annotation. We decided to choose tl=0.925 and
tu=0.975 in the paper to approximately match the recall values of the Rough
and Rougher Annotations, shown in Table 2.

Our proposed framework performed well on the synthesized annotations, but
we did not test for robustness against lower recall values. So we synthesized an-
notations with lower recall thresholds and evaluated our framework on the new
annotations. For sake of time, the evaluation is only performed on DeepCrack [8]
as the Macro Branch, but we believe it suffices since the proposed framework per-
formed well for all Macro Branches tested. Table 3 shows the result. Since lower
recall thresholds translate to degradation in annotation quality, lower F-scores
for lower recall threshold range is expected. The important point is whether the
benefit of introducing the Micro Branch is affected by the recall threshold. From
Table 3 we can conclude that the Micro Branch is effective regardless of the
recall threshold, as the F-score improves for all cases. In fact, the performance
gap between the lowest recall threshold (tl=0.85, tu=0.9) and the highest recall
threshold (tl=0.925, tu=0.975) shrinks when the Micro Branch is introduced.
Therefore, we can conclude that our method is robust to annotations of varying
recall values.

Finally, as manual and synthetic annotations approach the generation of low
quality annotations differently, we can say that the two annotations present dif-
ferent annotation styles. Therefore, by evaluating the proposed framework with
both manual and synthetic annotations, we also test the proposed framework for
robustness against different annotation styles, further solidifying the method’s
reproducibility on new datasets.

3.3 Reproducible Experiments

When researchers hear the word “reproducible,” they probably think about re-
producing the experiments. One of the ways to prove reproducibility is to upload
the codebase to a public repository as we have done. But is it possible to tell
if an experiment is well designed an reproducible, without having to run the
experiments yourself? We believe that the following are important items for
reproducible experiment design:

147

Title Suppressed Due to Excessive Length 7

Table 3: F-scores for the Dil-1 and Dil-4 Annotations under different lower and
upper recall thresholds (tl and tu, respectively) during the synthesis process.
tl=0.925, tu=0.975 is used in the original paper.

Dil-1 Dil-4
tl tu Aigle CFD DCD Aigle CFD DCD

0.85 0.9 0.532 0.579 0.814 0.296 0.389 0.716
0.9 0.95 0.562 0.589 0.792 0.335 0.410 0.727

0.925 0.975 0.579 0.603 0.799 0.323 0.445 0.749

(a) Without Micro Branch

Dil-1 Dil-4
tl tu Aigle CFD DCD Aigle CFD DCD

0.85 0.9 0.755 0.625 0.844 0.746 0.564 0.815
0.9 0.95 0.771 0.625 0.829 0.772 0.561 0.822

0.925 0.975 0.772 0.636 0.831 0.775 0.574 0.823

(b) With Micro Branch

– Is the method tested on multiple datasets?
– Does ablation study exist?
– Can the proposed method perform well even if some of its modules are

replaced?

We tried to fulfill the above items when we designed the experiments.
First, we prepared three datasets, namely, Aigle [2], CFD [10], and DCD [8].

In addition, we prepared many versions of the low quality annotations for each
dataset, as mentioned in Sec. 3.2.

Because each dataset is strongly biased, preparing many different dataset
is important from the robustness standpoint. Table 4 summarizes the charac-
teristics of the three datasets used in the experiments. As the table shows, the
characteristics of the datasets vary greatly. For example, Aigle dataset is the
smallest dataset with only 38 total image samples compared to over 500 images
in DCD. The size of the cracks also greatly varies between those two datasets,
with cracks in DCD occupying over 5 times the area as that of Aigle. In addition
to difference in the characteristics of cracks, the quality of the Precise Anno-
tation greatly varies among the datasets as well. As an example, Fig. 4 shows
cropped samples from Aigle and CFD. Although it requires some familiarity with
inspecting crack images, the image samples show that the annotations for Aigle
is much more accurate than that of CFD. For example, in CFD, ring-shaped
cracks are often completely filled, and faint lines that are probably artifacts of
jpeg compression are annotated as cracks. Part of the reason why annotations
on CFD is not very good is because its cracks are of lighter color- the mean
value of the crack pixels is double that of the other datasets- making it difficult
to identify the crack locations. This also caused problems for the performance
of the proposed framework, as it performed poorly for CFD. Evaluating with

148

8 Yuki Inoue

Table 4: Dataset information. Mean and standard deviation are for pixels values
between 0 and 256.

Dataset
Sample counts Crack Brightness

Crack width Crack Area Anno. quality
Train Test Mean Std

Aigle 24 14 52 22.6 Narrow 0.71% High
CFD 71 47 109 25 Medium 1.4% Low
DCD 300 237 59 42 Wide 3.5% Medium

O
ri

g
in

a
l

G
T

Aigle CFD

Fig. 4: Examples of variations in annotation quality. The annotation quality of
CFD is significantly worse than that of Aigle. Evaluating with various datasets
also tests against varying annotation quality.

various datasets allows for analysis from various angles, making it more likely
that the proposed method is reproducible in a new environment.

Second item on the list of reproducible experiment design asks for ablation
studies. We conducted ablation studies by evaluating the framework without
Micro Branch, and showed that the inclusion of Micro Branch results in more
robustness against annotation quality. We also showed that the Micro Branch
alone is also not enough to achieve high detection accuracy.

Third item asks for the proposed method to be tested under different instan-
tiations of the modules. The idea here is that a method’s superior performance
should be independent of the implementation details. For example, if a method
uses a feature extracting backbone, does it perform well with different types of
backbone networks? Also, can the proposed method perform well even if some
of its layers are replaced with computationally lighter ones? In our case, we
tested our framework with three different crack detectors [3,5,8] as the Macro
Branch, and confirmed that the framework is effective regardless of the Macro
Branch implementation. In addition, we also tested the proposed framework with
a computationally lighter version of one of the networks to double check that
the superior performance is reproducible regardless of the Macro Branch used.

149

Title Suppressed Due to Excessive Length 9

4 Conclusion

The goal of a research paper is to encourage future researchers to adopt your
work and expand the wealth of knowledge, not be a dead-end or misguide aca-
demic progress. In this paper, we argued that a first step of adoptability is
reproducibility, and focused on how to secure adoptability and reproducibility
in research by outlining our efforts in our ICPR2020 paper. Although the discus-
sions were limited to our ICPR2020 paper, we hope that it helped demystifying
reproducible and adoptable research designs.

References

1. A. Buslaev, A. Parinov, E.K.V.I.I., Kalinin, A.A.: Albumentations: fast and flexible
image augmentations. ArXiv e-prints (2018)

2. Chambon, S., Moliard, J.M.: Automatic road pavement assessment with image pro-
cessing: review and comparison. International Journal of Geophysics 2011 (2011)

3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: ECCV (2018)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

5. Inoue, Y., Nagayoshi, H.: Deployment conscious automatic surface crack detection.
In: WACV. pp. 686–694. IEEE (2019)

6. Inoue, Y., Nagayoshi, H.: Crack detection as a weakly-supervised problem: Towards
achieving less annotation-intensive crack detectors. In: International Conference on
Pattern Recognition (ICPR) (2020)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

8. Liu, Y., Yao, J., Lu, X., Xie, R., Li, L.: Deepcrack: A deep hierarchical feature
learning architecture for crack segmentation. Neurocomputing 338, 139–153 (2019)

9. Mashable: Google’s artificial intelligence chief says ’we’re in an ai spring’ (2016),
https://mashable.com/2016/05/20/google-ai-spring/

10. Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using
random structured forests. IEEE TITS 17(12), 3434–3445 (2016)

11. Synced: Neurips 2019 — the numbers (2019), https://syncedreview.com/2019/12/
12/neurips-2019-the-numbers/

12. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics
gems IV. pp. 474–485. Academic Press Professional, Inc. (1994)

150

On the Implementation of Planar 3D Transfer
Learning for End to End Unimodal MRI

Unbalanced Data Segmentation

Martin Kolarik1[0000−0001−6158−6162], Radim Burget1[0000−0003−1849−5390],
Carlos M. Travieso-Gonzalez2[0000−0002−4621−2768], and Jan

Kocica3[0000−0002−2937−6373]

1 Dept. of Telecommunications, Brno University of Technology, Brno, Czech Republic
martin.kolarik@vutbr.cz

https://www.utko.fekt.vut.cz/en
2 Dept. Signals and Communications. IDeTIC, University of Las Palmas de Gran

Canaria, Las Palmas, Spain
3 Masaryk University and University Hospital Brno, University Hospital Brno,

Brno, Czech Republic

Abstract. This article describes detailed notes on the practical imple-
mentation of our paper Planar 3D transfer learning for end to end uni-
modal MRI unbalanced data segmentation (ICPR 2020, Milan), which
deals with a problem of multiple sclerosis lesion segmentation from a
unimodal MRI flair brain scan by applying a planar 3D transfer learn-
ing backbone weights to an autoencoder segmentation neural network.
Our source code is published online under an open-source license, and
we provide step-by-step instructions for the reproduction of our results.

Keywords: Multiple Sclerosis · Reproducibility · Segmentation · Trans-
fer learning

1 Introduction

Medical segmentation using deep 3D convolutional networks is an active research
area with application in many problems, one of them being the segmentation of
multiple sclerosis lesions. While it is obviously suitable for the natural 3D repre-
sentation of medical MRI scans, the 3D data processing is often substituted by
its 2D counterpart due to a sole availability of deep convolutional neural network
transfer learning weights trained on the Imagenet dataset [4].
In our paper ”Planar 3D transfer learning for end to end unimodal MRI unbal-
anced data segmentation” we propose a method for transformation of the 2D
weights from the VGG network to planar 3D form. Then we study the effect
of the transformed weights when used as a backbone of segmentation neural
network for heavily unbalanced data processing. In the following sections, we
describe the software implementation details of the planar 3D weights prepara-
tion, dataset processing, and all details needed to reproduce our results in the
aforementioned paper.

151

2 On the Implementation of Planar 3D Transfer Learning, M. Kolarik et al.

2 Implementation details

The complete source code was published at Github [6] with instructions how
to reproduce our experiments. The repository also contains code for generating
the planar 3D VGG 16 weights for individual experimentation with this transfer
learning method.

2.1 Dataset pre-processing

We performed the experiment on the MSSEG 2016 multiple sclerosis lesion seg-
mentation dataset [3]. Dataset example can be seen in Fig. 1. Although the data
are originally in the axial view (top-down), we did rotate the scans to the sagit-
tal view (left-right). This was done only due to our previous experience working
with sagittal data. As the data are fully 3D, the evaluation metrics calculation
was not affected by the rotation.

(a) MRI Sagittal scan (b) Segmentation mask

Fig. 1: Dataset example MRI scan slice with corresponding segmentation mask

After the rotation, we did perform histogram normalization and scaling the
data between intervals [-1, 1] for scans and [0,1] for masks. We have tested to
scale the input scans to intervals of [-127, 127], [-1, 1], and [0, 1], but the interval
[-1, 1] gave the best results and was the most stable during training. Our source
code contains an automatic script to load the dataset and perform a complete
pre-processing pipeline.

2.2 Hyperparameter settings

Because of the heavily unbalanced dataset, where only 0.2 percent of the voxels
were in a positive class, it was hard to find a hyperparameters combination, which
resulted in a converged network. Most of the tested combinations resulted in a
network predicting all voxels negative. This is obviously not a correct solution
but a very probable one from the optimization point of view.
During the development and testing phase of our experiment, we tested various

152

On the Implementation of Planar 3D Transfer Learning 3

hyperparameters, and we selected the best performing combination to obtain
the published results. Our tested loss functions included standard binary cross-
entropy, Tversky loss, focal loss, and dice loss. The best results were acquired
by the following loss function, which was a combination of dice coefficient and
binary cross-entropy:

Loss(X,Y) = BC(X,Y) + 1−D(X,Y) (1)

As suggested in one of the reviews, it would be beneficial to implement
weighted loss of Dice and cross-entropy as Loss = (1 − λ) ∗ BC(X,Y) + 1 −
λ ∗D(X,Y) an study how different value of parameter λ affects the result.
We have tested Adam [5], Radam [7] and SGD optimizers. Optimizer Adam
gave the best results with default settings from library Keras and value decay =
1.99e − 7. The learning rate proved to be the critical hyperparameter affecting
the network convergence during training. We have tested values between 1e− 3
to 1e − 6. The network converged when trained with the learning rate values
lesser than 1e − 4, and the best results were obtained with the value of 5e − 5.
We also tested the differential learning rates in the encoder and decoder parts
of the network, but we did not achieve better results.

2.3 Planar 3D weights generation

We used the VGG 16 as the base network for planar 3D weights generation. The
weights were used from the default Keras [2] implementation as of October 2020.
The process of planar 3D weights preparation is implemented as an addition of
a dimension to a matrix of trained weights of convolutional layers of the VGG
16 network. This process practically shapes the weights to be used for the 3D
convolutional layer with a depth of 1 in the selected axis as depicted in Fig. 2.

Fig. 2: Visualisation of 2D 7→ Planar 3D convolutional kernel transformation

We have also tested transforming the Resnet 18 neural network architecture
to planar 3D, but we encountered problems mainly because the Resnet does
not use pooling, but the convolutional kernel shapes to manipulate the feature
size. Despite this, we managed to implement and test the planar 3D Resnet 18
backbone for segmentation. However, the network did not converge, and we were
not able to successfully train it even after hyperparameter optimization.

153

4 On the Implementation of Planar 3D Transfer Learning, M. Kolarik et al.

2.4 Execution environment

The experiments were carried out on a computer with 64 Gb of RAM and an
Intel i7-8700. The GPU computations were done on GTX 1080ti and GTX 2080ti
cards with 11 Gb of GPU memory. The computer was running an Ubuntu Linux
18.04.5. As for the software environment, the code is written in Python version
3.7.4. For deep learning computation, we used the libraries Keras [2] in version
2.2.4 and Tensorflow [1] in version 1.14.0. For GPU computations, the CUDA
[8] in version 11 was used with Nvidia drivers in version 450.80.02.

3 Experiments reproducibility

We published trained neural network weights from the first round of the cross-
validation. The complete manual on reproducing the first round of cross-validation
is at our Github repository [6].

3.1 Reproducing the MSSEG results

After obtaining the data, it is important to pre-process and divide it into the
scans and masks’ testing and training set. The following Table 1 shows which of
the MSSEG scans were used for testing in each of the cross-validation rounds.
During each round, we selected 3 testing scans, one from each of the scanning
center.

Table 1: Test data selection during cross-validation

K-fold
Test data

Center 1 Center 7 Center 8

1st fold 01042GULE 07043SEME 08037ROGU

2nd fold 01040VANE 07040DORE 08031SEVE

3rd fold 01039VITE 07010NABO 08029IVDI

4th fold 01038PAGU 07003SATH 08027SYBR

5th fold 01016SACH 07001MOE L 08002CHJE

Validation data were selected as the last 8 percent of the training 3D volumes,
which resulted in approximately one scan for validation in one cross-validation
round. We tried to implement a better validation scheme with validation data
from each of the training centers. Due to the small size of the MSSEG dataset (15
MRI scans) and the fact that other validation schemes required a larger portion
of the training data to be used for validation, these experiments led to poorer
results. In the following Table 2 you can see the results of the cross-validation

154

On the Implementation of Planar 3D Transfer Learning 5

rounds on each testing scan. The achieved Dice coefficients differ greatly due to
the different progression of Multiple sclerosis within each scan. Early stages with
small lesions are more difficult to segment, while later stages with severe lesions
show much better segmentation results.

Table 2: Dice coefficient - results of 5-fold cross-validation

K-fold Center 1 Center 7 Center 8 Average

1st fold 0.631 0.676 0.670 0.659

2nd fold 0.578 0.483 0.660 0.573

3rd fold 0.799 0.415 0.762 0.659

4th fold 0.609 0.529 0.492 0.542

5th fold 0.822 0.397 0.635 0.618

Result 0.69 ± 0.11 0.50 ± 0.11 0.64 ± 0.09 0.61± 0.05

Fig. 3: Graph showing the training and validation loss during the training pro-
cess. It is important to show that it is not easy to identify overfitting on multiple
sclerosis data due to high fluctuations in accuracy on different brain scans.

3.2 Training custom neural network

The planar 3D VGG 16 weights can be generated and used as a backbone for au-
toencoder segmentation neural networks using our code from the Github repos-
itory. Our data loading scripts are developed for loading the MSSEG dataset

155

6 On the Implementation of Planar 3D Transfer Learning, M. Kolarik et al.

and a general dataset stored as PNG image slices. We have trained the neural
network for 100 epochs, where each epoch denotes calculating the network error
and updating its weights on each of the training samples. Depending on the
chosen loss function and validation metrics, one epoch lasted between 100-120s,
which resulted in 2.5-3.5 hours of training. The inference of a single 3D brain
scan segmentation mask took approximately 15s. The progress of the training
and validation loss can be seen in Fig. 3. In a standard segmentation task, the
results in Fig. 3 would be seen as overfitting. Our results, however, show a dif-
ference in the training and validation set. Similar differences can be seen in the
results Table 2. It was difficult to pick a validation scan representing the training
set in terms of Multiple sclerosis lesions severity, and we had to take this into
account when trying to interpret the experiment results.

4 Conclusion

We have described the implementation of our paper Planar 3D transfer learning
for end to end unimodal MRI unbalanced data segmentation in terms of software
and hardware requirements. The Section 2 includes discussion on the selection
of hyperparameters and the experiment implementation and the Section 3 the
details on how to obtain and reproduce our results. Our source code is published
online [6] under an open-source license with complete instructions on how to
reproduce our experiments.

References

1. Abadi, M., Agarwal, A., Barham, P., et al., E.B.: TensorFlow: Large-scale machine
learning on heterogeneous systems (2015), https://www.tensorflow.org/, software
available from tensorflow.org

2. Chollet, F.: keras. https://github.com/fchollet/keras (2015)
3. Commowick, O., Istace, A., Kain, M., Laurent, B., Leray, F., Simon, M., Pop, S.C.,

Girard, P., Ameli, R., Ferré, J.C., et al.: Objective evaluation of multiple sclerosis
lesion segmentation using a data management and processing infrastructure. Scien-
tific reports 8(1), 1–17 (2018)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Kolarik, M.: Github repository containing source code to this paper, https:

//github.com/mrkolarik/transfer2d3d

7. Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J.: On the variance of
the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019)

8. NVIDIA, Vingelmann, P., Fitzek, F.H.: Cuda, release: 10.2.89 (2020), https://

developer.nvidia.com/cuda-toolkit

156

Reproducing the sparse Huffman Address Map
compression for deep neural networks

Giosuè Cataldo Marinò1[0000−0003−1386−6770],
Gregorio Ghidoli1[0000−0002−0421−8512], Marco Frasca1[0000−0002−4170−0922], and

Dario Malchiodi1[0000−0002−7574−697X]

1 Dipartimento di Informatica, Università degli Studi di Milano
Via Celoria 18, 20133 Milan, Italy

{marco.frasca,dario.malchiodi}@unimi.it, {giosue.marino,
gregorio.ghidoli}@studenti.unimi.it

Abstract. Deploying large convolutional neural networks (CNNs) on
limited-resource devices is still an open challenge in the big data era.
To deal with this challenge, a synergistic composition of network com-
pression algorithms and compact storage of the compressed network has
been recently presented, substantially preserving model accuracy. The
proposed implementation, which we describe in this paper, offers dif-
ferent compression schemes (pruning, two types of weight quantization,
and their combinations) and two compact representations: the Huffman
Address Map compression (HAM), and its sparse version sHAM. Taken
as input a model, trained for a given classification or regression problem
(as well as the dataset employed, which is necessary for the fine-tuning
of weights after network compression), the procedure returns the cor-
responding compressed model. Our publicly available implementation
provides the source code, two pre-trained CNN models (retrieved from
third-party repositories referring to well-established literature), and four
datasets. This implementation includes detailed instructions to execute
the scripts and reproduce the obtained results, in terms of the figures
and tables included in the original paper.

Keywords: CNN compression ·Weight pruning ·Weight sharing · Prob-
abilistic quantization · Entropy coding.

1 Introduction

This paper focuses on the reproducibility of results obtained in [5]. The aim of
the original work is twofold: a) to evaluate the impact of lossy CNN compres-
sion techniques (pruning and quantization) on prediction accuracy, and b) to
provide a compressed and compact representation of a given trained CNN for
classification or regression problems. Step a) has been carried out by consider-
ing two publicly available CNNs (see Sect. 2.2) trained respectively for image
classification and for protein-ligand affinity prediction (regression). The weights
of these models have been pruned and/or quantized, considering in particular

157

2 G. Marinò et al.

Fig. 1: Sketch of the proposed compression framework. The last level reports the
best representation format for the corresponding weight compression strategy.
For pruning and quantization both HAM and sHAM are shown, meaning that
the format achieving the best compression rate depends on the proportion of
original connection pruned (with low pruning HAM is preferred).

two different quantization procedures, namely weight sharing and probabilistic
quantization (cfr. Sect. 2.3). The prediction performance of the compressed mod-
els has been assessed on four benchmark data sets: MNIST [4], CIFAR-10 [3],
DAVIS [2] and KIBA [8] (see Sect. 2.1). Step b) leverages two novel compression
formats specifically designed to benefit from the pruning and quantization of
the connection weights, called HAM and sHAM, described in Sect. 2.4. Finally,
Sect. 3 describes how to run the experiments discussed in the original paper,
depicted in Fig. 1 and consisting of:

– input data retrieval (pre-trained CNN, as well as the corresponding training
set);

– network pruning and/or quantization;
– model retraining;
– model transformation to HAM or sHAM formats;
– assessment of the compressed model performance.

2 Implementation

In this section we describe all stages of the processing pipeline underlying the
results in [5]. Namely, Sect. 2.1 briefly introduces the processed datasets, while

158

Reproducing sparse HAM compression for deep neural networks 3

Size Resolution

MNIST 70 k 28× 28, grayscale
CIFAR 60 k 32× 32, color

(a) Classification

Proteins Ligands Interactions

DAVIS 442 68 30056
KIBA 229 2111 118254

(b) Regression

Table 1: Structure of the processed datasets.

Sect. 2.2 describes the models of neural networks used to test the performances
of three compression schemes. The latter are detailed in Sect. 2.3, while Sect. 2.4
depicts the representation format of the compressed models.

2.1 Dataset

We validated our methodology on two problems, respectively in the classification
and regression realms, employing in both cases two distinct datasets (see also
Table 1).

Classification. The first application concerns the multiclass classification of
handwritten digits, carried out on the MNIST [4] and CIFAR-10 benchmarks [3].
MNIST contains 70 k 28 × 28 grayscale images, whereas CIFAR-10 consists of
60 k 32 × 32 color images.

Regression. We considered the problem of predicting the affinity between drug
(ligand) and targets (proteins), processing the DAVIS [2] and KIBA [8] datasets.
Proteins and ligands are both represented through strings, respectively using the
aminoacid sequence and the SMILES (Simplified Molecular Input Line Entry
System) representation. DAVIS and KIBA contain, respectively: i) 442 and 229
proteins, ii) 68 and 2111 ligands, and iii) 30056 and 118254 total interactions.

2.2 State-of-the-art models

We considered two state-of-the-art CNN models as part of the input of our
processing pipeline:

– VGG19 [7], containing 16 convolutional layers and a fully-connected block,
trained on the CIFAR-10 and MNIST datasets; we assumed that this model
is likely over-dimensioned for the digit classification task, and indeed we
showed that we can obtain a succint version (requiring significantly less than
1% of the original space) without accuracy loss;

– DeepDTA [6], composed of two convolutional blocks (three convolutional lay-
ers followed by a MaxPool layer) to process proteins and ligands separately,
which are then joined through three fully-connected hidden layers; the net-
work is trained in turn on the DAVIS and KIBA datasets: although the

159

4 G. Marinò et al.

original network was specifically tailored for the considered problem, also in
this case we obtained a remarkable compression rate, still preserving model
performance.

2.3 Network compression

In this section we shortly describe the considered compression schemes, namely
pruning, weight sharing, and probabilistic quantization.

Pruning. Activation functions process the sum of the neuron inputs, each weight-
ed according to its connection; a straightforward compression technique consists
therefore in “cutting” all connections whose weight has a small absolute value.
Indeed, nullifying such negligible weights should not sensibly change the above
mentioned signal, as well as the global network output. We parameterized this
technique on the threshold p used in order to deem a connection as negligible:
in turn, this threshold was defined by considering a suitable set of empirical
quantiles of connection weights. As a post-processing phase, we retrained the
network, now ignoring the erased connections (that is, clamping the correspond-
ing weights to zero).

Weight sharing. In analogy with the observations at the basis of network prun-
ing, when several weights are close one another, they can all be set to a common
value without significantly affecting network performance. We clustered all learnt
weights using the k-means algorithm, obtaining k representative centroids which
we used to replace the weight values. Also in this case, we subsequently retrained
the network, now updating centroids through cumulative gradient. Note that this
algorithm, in its original form, outputs a table of representative weights, as well
as a matrix storing indices to this table, rather than the weights themselves. We
substituted this format with those described in the next section.

Probabilistic quantization. An alternative approach to weight sharing is that
of selecting the representative weights through a probabilistic algorithm. We
adapted a technique used in the realm of bandwitdh reduction, having the desir-
able property that the above metioned representative values can be thought as
an unbiased estimate of the original weights. For this technique we used the same
retraining process and parameterization used for the weight sharing technique.

2.4 Compact network representation

In order to appropriately exploit the characteristics of the compressed connection
matrices, the latter are stored by means of two novel formats, respectively called
HAM and sHAM. Both formats represent each matrix element through Huffman
coding, subsequently concatenating the corresponding codewords by column or-
der, thus obtaining a unique binary string. HAM encodes all weights, and the
lower the number of distinct weights in the matrix, the lower the average code-
word length. To benefit also from the matrix sparsity, sHAM applies Huffman

160

Reproducing sparse HAM compression for deep neural networks 5

Fig. 2: Example of HAM storage format.

Fig. 3: Example of sHAM storage format. The additional 0 marked in red is the
effect of padding required in order to work with machine words.

coding only to non zero elements, stored through Compressed Sparse Column
(CSC) format. In both HAM and sHAM cases, the generated bit sequence is
organized as a succession of machine words, interpreted as an array of integers.
Figures 2 and 3 show an example of encoding for both formats, highlighting the
various phases of the involved conversion.

3 Reproducibility

The results illustrated in [5] can be fully replicated by running the code in the
repository freely available on GitHub1. Once this repository has been cloned,
the user can launch the runner.sh shell script (available in the root directory),
which automatically creates a virtual environment within which all required
libraries are installed, to subsequently run all the experiments. As a result, sev-
eral text files are created in the time_space/results/ directory. These files
can be postprocessed by the notebook time_space/plot_from_file.ipynb to
get the best compression results and to generate summary plots. It is worthy
pointing out that, however, some small fluctuations in the results are inherently
due to the GPU utilization [1]. Running the experiments requires the avail-
ability of at least 10 GB of RAM, in order to load the selected CNN mod-
els; the execution time took roughly two weeks using a computing environ-
ment equipped with an Nvidia RTX 2060 GPU and an i7-9750H CPU. Note,

1 https://github.com/giosumarin/ICPR2020 sHAM

161

6 G. Marinò et al.

however, that this time refers to the execution more than 860 different ex-
periments, each involving compression and retraining of a CNN. To reproduce
a single compression experiment and to quickly check its reproducibility, the
reader can refer to the script runner_single_exp.sh in the repository root.
Whereas, the implementation of specific compression schemes is available in the
compressionNN_package/compressionNN folder of the above mentioned repos-
itory. More precisely, the scripts in files pruning.py, weightsharing.py, and
stochastic.py, respectively implement pruning, weight sharing, and probabilis-
tic quantization; analogously, the considered joint techniques are implemented
in pruning_weightsharing.py and pruning_stochastic.py scripts.

Acknowledgements

This work has been supported by the Italian MUR PRIN project “Multicrite-
ria data structures and algorithms: from compressed to learned indexes, and
beyond” (Prot. 2017WR7SHH).

References

1. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edn. (2012)

2. Davis, M.I., Hunt, J.P., Herrgard, S., Ciceri, P., Wodicka, L.M., Pallares, G.J.,
Hocker, M., Treiber, D.K., Zarrinkar, P.P.: Comprehensive analysis of kinase in-
hibitor selectivity. Nature Biotechnology 29, 1046–1051 (2011)

3. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s the-
sis, University of Toronto (2009)

4. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

5. Marinò, G., Ghidoli, G., Frasca, M., Dario, M.: Compression strategies and space-
conscious representations for deep neural networks. In: International Conference on
Pattern Recognition, ICPR 2020 (2020), in press (arxiv:2007.07967).

6. Öztürk, H., Özgür, A., Ozkirimli, E.: DeepDTA: deep drug-target bind-
ing affinity prediction. Bioinformatics 34(17), i821–i829 (09 2018).
https://doi.org/10.1093/bioinformatics/bty593

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: International Conference on Learning Representations (2015)

8. Tang, J., Szwajda, A., Shakyawar, S., Xu, T., Hintsanen, P., Wennerberg, K., Ait-
tokallio, T.: Making sense of large-scale kinase inhibitor bioactivity data sets: A
comparative and integrative analysis. Journal of Chemical Information and Model-
ing 54(3), 735–743 (2014). https://doi.org/10.1021/ci400709d

162

Implementation of Genetic Pseudo Rehearsal

Suri Bhasker Sri Harsha , Yeturu Kalidas

Indian Institute of Technology Tirupati,
Tirupati, Andhra Pradesh , 517506, India

{cs18s506,ykalidas}@iittp.ac.in

Abstract. Deep neural networks suffer from catastrophic forgetting prob-
lem when they are deployed in a continual learning scenario. In our main
work, we proposed Genetic Pseudo rehearsal, where we generated syn-
thetic data of the previous task using Genetic Algorithms and pseudo
rehearsed the neural network on it. We demonstrated the computational
and memory efficiency offered by our proposed method. In this work, we
discuss the implementation details of our proposed algorithm and the
experimental setup in detail.

1 Introduction

1.1 Catastrophic forgetting

Deep neural networks suffer from Catastrophic forgetting problem when deployed
in a continual learning scenario[1]. Robins[3] proposed the concept of pseudo
rehearsal, where a generator synthetically generates the data for the previous
task on which the neural network is rehearsed. Generative replay [4] is a good
example of pseudo rehearsal where the training data for the previous task is
synthetically generated using a Generative adversarial network(GAN).

1.2 Genetic Pseudo Rehearsal

In our main work [5], we proposed to generate synthetic data using Genetic
Algorithms instead of GANs. We demonstrated that we could achieve higher
efficiencies in computational and memory resource consumption by forgoing the
data’s photo-realism. In this work, we try to explain the implementation details
of our main work.

1.3 Organization of the paper

The paper has been divided into five main sections. In Section 2, we give insights
into the implementation of operations like Mutation, cross-over functions, which
are an integral part of the Genetic algorithm. We also explain the Enrichment
function used to enrich the data generated after the genetic algorithm phase.

To increase the work’s availability to a broader audience, we implemented our
work in 3 different formats. In the first format, the entire code has been made

163

2 S. Bhasker et al.

available in ready-to-run Google Colab notebooks. A detailed description of this
implementation is provided in Section 3 of the paper. In the second format, the
proposed algorithm has been implemented as a Python function call(.py file).
A function called Generate Genetic data has been implemented where the user
can pass their respective models and parameters as arguments, and the function
returns the generated synthetic data as output. The file also gives access to
other functions that are part of our main work, like mutation, cross-over, and
Enrichment phase and Agreement score. A detailed description of this format is
given in Section 4 of the paper.

In order to make our work available to users who build neural networks using
frameworks other than Tensorflow, we implemented the work as an service as
well. The proposed algorithm can be deployed on a local server, and users can
generate synthetic data for neural networks that were implemented in any Deep
learning framework. The description of this work is present in Section 5 of the
paper.

2 Overview of the code

The proposed algorithm was implemented in Python 3 with NumPy[2] library
handling all the vector operations that arose at various points in the algorithm.
The experiments in the main work used neural networks implemented using
Keras with Tensorflow in the backend. The code is made available at the following
Github link: https://github.com/BhaskerSriHarsha/Genetic-Pseudo-Rehearsal.

2.1 Representation of images

The experimentation took place in an image classification setting; hence, it is
essential to understand how images were represented in the Genetic Algorithm.
The algorithm’s crux lies in the process of evolving genes of organisms in a
population through iterative selection using a fitness function. Each image was
considered an organism, and the vector format representation of the pixel values
of the generated images was considered the genes in the algorithm. So, instead
of taking the images in standard picture formats like .jpg or .png, they were
considered as numpy arrays.

2.2 Fitness function

Each synthetically generated image was given to the neural network for classifi-
cation. The softmax confidence of the neural network at the final layer for the
target class was considered the fitness score of each organism. The fittest 25%
of the organisms in a given generation were propagated to the next generation
for evolution.

164

Implementation of Genetic Pseudo Rehearsal 3

2.3 Mutation function

The mutation function is responsible for perturbating the synthetic images’ pix-
els with a probability ”p”. To implement this, np.random.choice() function was
used. The function generated a vector of size same as that of the given image, in
which each element has a probability p of being a value between 0 and 1. The mu-
tation magnitude of each pixel was decided using np.random.normal() function,
which generated a value between 0 and 1 by sampling a normal distribution.

2.4 Crossover function

In addition to the mutation function, the cross-over operation was also used to
create the next generation of organisms. The cross-over function accepts two
NumPy arrays as inputs and the index through which the arrays will be crossed
over. The NumPy arrays (images) are clipped at the given index and the second
half of the arrays are exchanged. The arrays that were passed as arguments are
crossed over and ready to be used, and the function does not return anything as
it uses the ”Call by Object reference” property of the Python language.

2.5 Enrichment phase

Sklearn package was used to implement the Gaussian mixture models that was
critical in the enrichment phase of the algorithm. The GaussianMixture model
can be imported from sklearn.mixture package and it accepts the number-of-
components and data as arguments. The function fits N number of centers to
the data where N=number-of-components. All the functions mentioned above
were used in all the three formats in which our work was implemented. Though
the environment changes for the three implementations, the core logic and code
for the functions mentioned above remained constant.

3 Colab Notebooks

All the experiments that were reported in the main paper were run on Google
Colab notebooks. The experiments used a Tesla P100 GPU and an Intel Xeon
Dual Core 2.5 GHz processor. The Neural network was implemented in Keras
with Tensorflow in the backend. Numpy was used to represent the images in a
vector form; however, Matploblib library was used to display the images and gen-
erate the final graphs for the experiments. The experiments discussed in the main
paper are made available in a ready-to-run form in the Jupyter Notebooks
folder of our Github repository. The notebooks can be executed directly without
any modifications on the Google Colaboratory platform. Genetic Rehearsal.py
file, which is also present in the folder, needs to be present in the working di-
rectory as it contains the supporting functions to run the algorithm. However,
the main code to create the synthetic data using the Genetic algorithm and the
Enrichment phase is written in the notebook. It has to be noted that the purpose

165

4 S. Bhasker et al.

of these Google Colab notebooks is to aid in the reproducibility of experiments
that were described in the main work. The notebooks generate the synthetic
data for networks that are already declared in the notebooks. In case the reader
wants to generate synthetic data for their neural network, it is required that the
user swaps the default neural network in the notebook with their network.

4 Python library files

For users who wish to run the code on their local systems instead of Google
Colab environment, the proposed algorithm has been implemented as a python
library and can be accessed as a function call. To run it, visit the official GitHub
repository and download the Genetic Rehearsal.py file in the folder .py files to
your working directory. A requirements file (requirements.txt) has been provided
to aid the users in creating the virtual environment required to run the code.
The main Genetic algorithm that generates the synthetic data is implemented
in the function Genetic data Generator(). It accepts the model, shape of the
image sample in the dataset, target classes for which the synthetic data is to be
generated, size of population in a given generation, number of cultures, number
of generations for which the evolution continues, pixel mutation probability and
finally the pixel mutation type as input arguments. The function returns the
generated synthetic data and the respective labels for the individual samples in
the form of a list with the first element as data and the second element as labels.

The Enrichment() function performs the enrichment operation that was de-
scribed in the main work using Gaussian mixture models from Sklearn library.
The function takes the target data, labels of the data, target model, number
of centers for the Gaussian mixture model, number of classes and number of
samples to be generated as parameters. For Step 1 of the Enrichment phase, the
number of centers is set equal to the number of classes, and for Step 2 of the
Enrichment phase, the number of centers is set to 1. The explanation for this can
be found in our main work. Please note that to avoid memory overflows, set the
default datatype of the NumPy arrays as float32 instead of the default float64.
Since we are dealing with images in this particular application, a Numpy array
with float32 as datatype is sufficient and memory-efficient. In addition to the
main functions, the file also has additional functions like duplicate remover(), du-
plicate counter(), agreement score() etc which were used in the Ablation studies
section of the main paper.

An in-situ documentation of each function can be obtained using the help()
function. For example, the command help(duplicate remover) will print the doc-
umentation for the duplicate remover function when executed.

5 Data generation as a service

To extend our algorithm’s availability to users who have already developed their
neural network models using frameworks other than Tensorflow, we are offering
the proposed algorithm as a service which can be deployed on a local server.

166

Implementation of Genetic Pseudo Rehearsal 5

Neural networks developed using any deep learning framework can access our
proposed algorithm as a service using HTTP methods.

The Genetic algorithm that generates synthetic data runs on a local server
and will be referred to as GA-service. The Neural network is deployed on the local
machine and will be called as model-service from here on. A continuous interac-
tion between the GA-service and model-service generates the desired synthetic
samples. The entire process of generating synthetic data has been split between
the GA service and model-service. Whenever the GA-service requires the neural
network predictions, the model-service requests the current generation of images
and returns the softmax confidence for each image to the GA-service as a string.
The predictions received by the GA-service are used by the fitness function to
select the fittest individuals for the next generation. The whole process continues
until the generated synthetic data reaches a threshold level of fitness.

The algorithm at the model-service is described in Algorithm 1. The ”/”
symbol describes the path from where the server-side script was deployed.

Algorithm 1: Algorithm at the model-service

status flag = 0;
target labels = ”1,2,3”;
POST(’/’, data = target labels, timeout = 1);
status flag = GET(’/training’);
while status flag == 1 do

images flag = GET(”/flag”);
if images flag == 1 then

images = GET(’/images’);
predictions = model(images);
POST(’/predictions’,data = predictions);
POST(’/reset flag’,data = 0);
POST(’/ready’,data = 1);

end
status flag=GET(’/training’);

end
synthetic data=GET(’/synthetic data’);

The synchronization between the two services is achieved by monitoring three
variables: status flag, images flag and ready flag on the server by the client.
status flag is responsible for letting the model-service know that the generation
of synthetic images is still active and on-going. When the GA-service flips the
status flag to 0, it means that the required synthetic data is ready, and the
evolution procedure can be stopped. images flag variable says that the GA-
service has prepared the current generation of images, and the model-service
can acquire them using the GET method. ready flag is used by GA-service to
know whether predictions for the previously sent images are ready to be collected
by the GA-service from the model-service.

167

6 S. Bhasker et al.

The model-service starts the synthetic data generation process by sending
POST command to the GA-service. The POST command carries the target labels
for which the synthetic data is to be generated as data. The model-service then
monitors the status flag on the GA-service using the GET command. As soon as
the status flag is set to 1, the procedure to generate the synthetic images begins.
The GA-service begins by generating random images as the first generation. It
then sets the images flag variable to 1, indicating the model-service to collect
the images. The model-service collects those images using a GET command and
returns the softmax predictions of each image to the GA-service in the form of a
string. This process continues till a generation reaches a certain threshold level
of fitness. The GA-service ends the procedure by setting the status flag back to
0. Finally, the model-service collects the generated synthetic data using a GET
method.

To install the setup, download the GA-service.py file available in the API
folder of the Github repository. The requirements file (requirments.txt) is also
provided in the folder, which can be used to set up the virtual environment re-
quired to run the GA-service and model side codes. A template (model-service.py)
for the model-service side is provided, which can be used by any deep learning
framework in Python. If the user uses any language other than Python, the refer-
ence algorithm (Algorithm 1) provided on the Github page can be used to write
the model-service’s code. Currently, the target labels can be sent as parameters
to the GA-service from the model-service. The package will be updated to send
more parameters concerning the genetic algorithm soon.

6 Conclusion

In this work, we discussed the implementation details of Genetic Pseudo Re-
hearsal. The proposed algorithm was implemented in three different formats to
increase the work’s availability to the research community. All the formats were
discussed in the current work to aid the reproducibility of the research.

References

1. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences 3(4), 128–135 (1999)

2. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al.: Array programming
with numpy. Nature 585(7825), 357–362 (2020)

3. Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Sci-
ence 7(2), 123–146 (1995)

4. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay.
In: Advances in Neural Information Processing Systems. pp. 2990–2999 (2017)

5. Suri Bhasker Sri Harsha, Y.K.: Pseudo rehearsal using non photo-realistic images.
In: International Conference on Pattern Recognition(ICPR) (2020)

168

Author Index

A
Allegretti, Stefano 136
B
Barthélemy, Quentin 47
Bertrand, Sarah 47
Bolelli, Federico 136
Burget, Radim 151
C
Constant, Thiery 115
Crispim-Junior, Carlos 47
D
de Weerdt, Mathijs 8
Debled-Rennesson, Isabelle 66, 115
Decelle, Rémi 66
Delconte, Florian 115
F
Frasca, Marco 157
G
Ghidoli, Gregorio 157
Grana, Costantino 136
H
Hung, Hayley 8
I
Inoue, Yuki 142
Ivanyuk, Vera 101
K
Kerautret, Bertrand 86, 115
Kocica, Jan 151
Kolarik, Martin 151
Krijthe, Jesse H. 8
L
Lamy, Jonas 86
Liem, Cynthia C. S. 8
Lohani, Devashish 47
Longuetaud, Fleur 66
Loog, Marco 8
Lopresti, Daniel 17
M
Malchiodi, Dario 157
Marinò, Giosuè Cataldo 157
Matsubara, Yoshitomo 28
Merveille, Odyssée 86

169

Migut, Gosia 8
Mothe, Frédéric 66
N
Nagy, George 17
Ngo, Phuc 59, 115
Nguyen, Van-Tho 115
O
Oliehoek, Frans 8
P
Panichella, Annibale 8
Passat, Nicolas 86
Pawe lczak, Przemys law 8
Picek, Stjepan 8
R
Robinault, Lionel 48
S
Suri, Bhasker Sri Harsha 164
T
Tougne, Laure 47
Travieso-Gonzalez, Carlos M. 151
Tsapina, Ekaterina 101
V
van Gemert, Jan 8
Y
Yeturu, Kalidas 161
Yildiz, Burak 8

170

